Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Handling MemoryError in Scipy Sparse Matrix Multiplication

  • vlogize
  • 2025-10-03
  • 0
Handling MemoryError in Scipy Sparse Matrix Multiplication
Scipy sparse memory explosion with simple matrix multiplicationpythonmatrixscipysparse matrix
  • ok logo

Скачать Handling MemoryError in Scipy Sparse Matrix Multiplication бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Handling MemoryError in Scipy Sparse Matrix Multiplication или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Handling MemoryError in Scipy Sparse Matrix Multiplication бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Handling MemoryError in Scipy Sparse Matrix Multiplication

Discover how to resolve `MemoryError` during sparse matrix multiplication in Scipy with a detailed solution and optimizations for your data manipulation tasks.
---
This video is based on the question https://stackoverflow.com/q/63106851/ asked by the user 'Integral' ( https://stackoverflow.com/u/2136601/ ) and on the answer https://stackoverflow.com/a/63124086/ provided by the user 'CJR' ( https://stackoverflow.com/u/7340948/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Scipy sparse memory explosion with simple matrix multiplication

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Handling MemoryError in Scipy Sparse Matrix Multiplication: A Practical Guide

When working with large datasets in Python, particularly in scientific computing or data analysis, you might encounter unexpected challenges. One common issue arises when performing matrix multiplication with Scipy's sparse matrices, leading to memory overflow errors (MemoryError). In this guide, we will address this problem and provide a practical solution.

Understanding the Problem

The Scenario

You may find yourself trying to multiply a large sparse matrix using the A.dot(A.T) method in Scipy. Although the resultant matrix should theoretically have very few nonzero values, in actuality, the memory required for the operation can be enormous. Consider the following code snippet:

[[See Video to Reveal this Text or Code Snippet]]

Here, we create a sparse matrix A with dimensions (2, n) containing only two nonzero values. However, when you attempt B = A.dot(A.T), you are likely to encounter a MemoryError.

Why This Happens

The default COO format (Coordinate List) used by Scipy for sparse matrices is inefficient for certain mathematical operations, particularly matrix multiplications. This inefficiency leads to the development of intermediate data structures that require a significant amount of memory, triggering the error.

Solution

Direct Computation Approach

To bypass the memory issues caused by the COO format during matrix multiplication, it’s recommended to convert your matrix into a more suitable format for operations. Here’s how you can achieve this:

Convert COO to CSR: First, change the matrix format to Compressed Sparse Row (CSR), which is more efficient for arithmetic operations.

Perform the multiplication manually: Instead of relying on the dot method, compute the result manually using array manipulations.

Here’s the revised code for accomplishing this:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

Conversion to CSR: B = A.tocsr() converts the matrix to CSR format, which allows for efficient row-based access for matrix operations.

Multiplication Logic: Instead of using dot, the code iterates through the rows and columns of the matrices to calculate the sum of products where the values are non-zero.

When to Use This Approach

This workaround is particularly effective when dealing with reasonably sized problems where n and m are manageable. Applying this method will spare you from memory overflow issues and improve computational efficiency.

Conclusion

Matrix multiplication with large sparse matrices in Scipy can lead to memory errors if not handled properly. By understanding the challenges associated with the COO format and applying alternative strategies like manual multiplication with CSR conversion, you can overcome these issues and continue your data analysis tasks without interruption.

Remember, while Scipy is a powerful tool, knowing how to manipulate matrices effectively is key to leveraging its capabilities without running into memory limitations.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]