Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the Unexpected Result in Numpy Interpolation with Pandas

  • vlogize
  • 2025-03-31
  • 1
Solving the Unexpected Result in Numpy Interpolation with Pandas
unexpected result after interpolating columns to target x-coordinatespythonpandasnumpyinterpolation
  • ok logo

Скачать Solving the Unexpected Result in Numpy Interpolation with Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the Unexpected Result in Numpy Interpolation with Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the Unexpected Result in Numpy Interpolation with Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the Unexpected Result in Numpy Interpolation with Pandas

Learn how to resolve issues with np.interp in Python when interpolating data columns from a CSV file. Our guide provides step-by-step solutions for accurate results.
---
This video is based on the question https://stackoverflow.com/q/70680249/ asked by the user 'rayan' ( https://stackoverflow.com/u/15991222/ ) and on the answer https://stackoverflow.com/a/70681041/ provided by the user 'Okapi575' ( https://stackoverflow.com/u/3373796/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: unexpected result after interpolating columns to target x-coordinates

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Numpy Interpolation Issues

When working with data analysis in Python, interpolation can often be a powerful tool to estimate unknown values based on known data points. However, users sometimes encounter unexpected results during this process, especially when using the np.interp function from the NumPy library. This guide aims to dissect a typical problem faced while interpolating two data columns in a CSV file and to provide clear solutions to arrive at the intended outcome.

The Problem

In this scenario, the user intends to use np.interp to linearly interpolate values from columns v11 and v12 against a set of target values, represented by the list x. Here’s a look at the provided data:

[[See Video to Reveal this Text or Code Snippet]]

The script used for interpolation was as follows:

[[See Video to Reveal this Text or Code Snippet]]

However, the output yielded unexpected results:

[[See Video to Reveal this Text or Code Snippet]]

The issue raised questions about why the interpolated values (intrepo_v) did not seem close to either v11, v12, or the expected outcome based on x.

Getting to the Root of the Problem

The main problem with using np.interp here relates to the assumptions it makes regarding the input data. Specifically, np.interp requires the values in the first array (in this case, df['v11']) to be monotonic (either strictly increasing or decreasing). If the values in v11 are not sorted or do not follow this rule, the results will be erroneous.

Solution Approaches

Here are two effective solutions to address the issue and obtain the right interpolated values:

1. Using SciPy's interp1d

The quickest method is to use the interp1d function from the scipy.interpolate module. This method does not require the input values to be sorted, thus allowing for more flexibility. Here’s how to implement it:

[[See Video to Reveal this Text or Code Snippet]]

2. Sorting Input Values with NumPy

If you want to continue using np.interp, you can sort the input values first. Here's how to do that:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Interpolating data using NumPy can be straightforward, but understanding the function’s requirements is key to avoiding unexpected results. By either utilizing SciPy’s flexible interpolation capabilities or sorting your data appropriately for use with NumPy, you can achieve accurate outcomes from your datasets.

With these solutions, you should be able to implement smooth and reliable data interpolation in your Python projects. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]