Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Python and Pandas: Convert Date Format from String to yyyy-mm-dd

  • vlogize
  • 2025-08-31
  • 1
Python and Pandas: Convert Date Format from String to yyyy-mm-dd
Python and Pandas - Convert Tue Jun 23 2020 to yyyy-mn-ddpythonpandasdatetime
  • ok logo

Скачать Python and Pandas: Convert Date Format from String to yyyy-mm-dd бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Python and Pandas: Convert Date Format from String to yyyy-mm-dd или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Python and Pandas: Convert Date Format from String to yyyy-mm-dd бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Python and Pandas: Convert Date Format from String to yyyy-mm-dd

Learn how to convert date strings in Python Pandas dataframes from a complex format to a simplified `yyyy-mm-dd` format using effective parsing methods.
---
This video is based on the question https://stackoverflow.com/q/64433104/ asked by the user 'David Pepin' ( https://stackoverflow.com/u/13686878/ ) and on the answer https://stackoverflow.com/a/64433180/ provided by the user 'Quang Hoang' ( https://stackoverflow.com/u/4238408/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python and Pandas - Convert Tue Jun 23 2020 to yyyy-mn-dd

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Convert Date Strings in Pandas DataFrames to yyyy-mm-dd Format

Working with date and time data can often be challenging, especially when the format isn't standard. Many developers and data analysts frequently encounter issues when trying to parse complex date strings from various data sources, such as databases. If you've recently extracted date information from a MongoDB database into a Pandas DataFrame and are struggling with a specific format, this post is for you!

In this guide, we'll explore how to convert a confusing date string like this:

[[See Video to Reveal this Text or Code Snippet]]

into a much more manageable yyyy-mm-dd format. Let's dive into the solution step by step.

Understanding the Problem

The primary challenge is that the date string includes extraneous information—like the time and timezone descriptors—that may not be recognized by Pandas' date parsing functions. Attempting to convert it directly can lead to errors, such as:

[[See Video to Reveal this Text or Code Snippet]]

This error signifies that Pandas is having trouble deciphering the full format of the date string. Thus, we need to simplify the string to isolate the essential components required for conversion.

Solution Overview

Fortunately, Pandas provides tools and methods to efficiently extract and format date strings. Below are two simple approaches you can use to get your dates into the yyyy-mm-dd format.

Method 1: Extract Only the Relevant Parts

One of the most effective ways to parse date strings is to extract only the necessary parts. You can use the str.extract() function to target the date components. Here’s how it works:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

df.problemDate: This references the specific column containing your original date strings.

.str.extract(...): This function uses a regular expression to extract specific parts of the string. In this case, it targets the date by ignoring unnecessary elements like the time and timezone.

Method 2: Clipping Extraneous Information

Another strategy is to simply slice off the unwanted parts of the string. You can use the following code:

[[See Video to Reveal this Text or Code Snippet]]

Code Breakdown:

Here, we are using a similar extraction technique, but this time we’re targeting everything up to the first parenthesis, which typically denotes extraneous information to be omitted.

Formatting the Date

After you have successfully converted the date strings, you may wish to format them as strings in the desired format. You can achieve this easily with:

[[See Video to Reveal this Text or Code Snippet]]

Result:

Executing this line will yield a neatly formatted output:

[[See Video to Reveal this Text or Code Snippet]]

Now, the dates are in a uniform string format that is much easier to work with for further processing or analysis.

Conclusion

Transforming complex date strings into a consistent and manageable format in Pandas is straightforward once you understand how to isolate and extract the relevant data. With methods like .str.extract() and the ability to format dates using .dt.strftime(), you'll be well-equipped to process dates efficiently within your DataFrames.

Feel free to implement these strategies in your own projects, and say goodbye to the hassle of date formatting issues! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]