Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms

  • Valence Labs
  • 2025-06-25
  • 586
Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms
  • ok logo

Скачать Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms

Portal is the home of the AI for drug discovery community. Join for more details on this talk and to connect with the speakers: https://portal.valencelabs.com/starkl...

Paper: Classifier-Free Guidance: From High-Dimensional Analysis to Generalized Guidance Forms

https://arxiv.org/abs/2502.07849

Abstract: Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion and flow-based generative models, enabling high-quality conditional generation. A key theoretical challenge is characterizing the distribution induced by CFG, particularly in high-dimensional settings relevant to real-world data. Previous works have shown that CFG modifies the target distribution, steering it towards a distribution sharper than the target one, more shifted towards the boundary of the class. In this work, we provide a high-dimensional analysis of CFG, showing that these distortions vanish as the data dimension grows. We present a blessing-of-dimensionality result demonstrating that in sufficiently high and infinite dimensions, CFG accurately reproduces the target distribution. Using our high-dimensional theory, we show that there is a large family of guidances enjoying this property, in particular non-linear CFG generalizations. We study a simple non-linear power-law version, for which we demonstrate improved robustness, sample fidelity and diversity. Our findings are validated with experiments on class-conditional and text-to-image generation using state-of-the-art diffusion and flow-matching models.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]