Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus

  • Arya Anjum
  • 2025-06-20
  • 169
Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus
Calculus Class 12Find minimum using second derivativef(x)=3x^2-6x+1Second Derivative TestRelative Minimum CalculusConcavity test calculusStep-by-step calculus problemSecond derivative trickMath tutorial second derivativeCalculus problems solvedMaxima minima calculusUse Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1Relative extrema calculusMaths board exam preparation
  • ok logo

Скачать Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus

Use Second Derivative test to show that f(x)=3x^2-6x+1 has a relative minimum at x=1 |calculus

Want to learn how to find relative minima using the Second Derivative Test in Calculus? In this video, we solve the function f(x) = 3x² - 6x + 1 step-by-step to show why it has a relative minimum at x = 1.

✅ Perfect for Class 11, 12, or college-level students
📘 Learn Second Derivative Test in the easiest way
🎓 Great for board exam prep, competitive exams, and entrance tests!

👉 Don't forget to Like, Share, and Subscribe for more Calculus tricks and concepts.

📌 Topics Covered:
First derivative of a function
Second derivative test
Relative extrema (minimum/maximum)
Concavity and critical points

📚 Stay tuned for more videos on:
Derivatives
Maxima and Minima
Limits and Continuity
Differentiation & Integration

🔑 Tags
Second Derivative Test
Relative Minimum Calculus
f(x)=3x^2-6x+1
Find minimum using second derivative
Calculus Class 12
Critical points and second derivative
Maxima minima calculus
Second derivative test example
Maths board exam preparation
Relative extrema calculus
Concavity test calculus
Step-by-step calculus problem
Calculus problems solved
Math tutorial second derivative
Second derivative trick
relative extrema calculus
critical points second derivative
maxima and minima calculus tutorial
concavity test with second derivative
calculus second derivative step by step
Second Derivative Test
Second Derivative Test Explained
Second Derivative Test Calculus
second derivative test example
second derivative test f(x)=3x^2-6x+1
find minimum using second derivative
how to find relative minimum calculus
second derivative test class 12 maths
concavity and extrema explained

#️⃣ Hashtags
#SecondDerivativeTest
#CalculusMadeEasy
#RelativeMinimum
#MathsClass12
#CalculusTricks
#MinimaAndMaxima
#DerivativeTest
#BoardExamMaths
#MathTutorial
#Mathematics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]