Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Pair of Straight Lines | Two Dimensions Geometry |

  • DR Colleger
  • 2022-12-14
  • 1245
Pair of Straight Lines | Two Dimensions Geometry |
dr collegerpair of linear equationspair of linear equations in two variablespair of linear equations in two variables class 10pair of straight linespair of straight lines basic conceptspair of straight lines class 11pair of straight lines class 12pair of straight lines iit jeestraight linesstraight lines class 11transformation of axestransformation of coordinate systemtransformation of coordinate systemstwo dimensional analytical geometry class 11
  • ok logo

Скачать Pair of Straight Lines | Two Dimensions Geometry | бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Pair of Straight Lines | Two Dimensions Geometry | или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Pair of Straight Lines | Two Dimensions Geometry | бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Pair of Straight Lines | Two Dimensions Geometry |

Pair of straight lines | Two dimensions geometry | ‪@drcolleger‬

An Introduction:
A straight line, often known as a line, is a one-dimensional infinite geometry having no width but just length.
A pair of straight lines is represented by a second-degree equation in two variables under specific conditions.
A pair of straight lines can also be represented as a straight line by multiplying two linear equations in x and y.

When the product of two linear equations in x and y indicates a straight line is multiplied together, a pair of straight lines is generated.
Let , L1=0 and L2=0 be two straight line equations.
If P(x1,y1) is a point on L1, the equation L1=0 is satisfied. If P(x1,y1) is a point on L2=0, then the equation is satisfied.
P(x1,y1) satisfies the equation L1L2=0 if it is located on L1 or L2.
∴ L1L2=0 denotes the pair of straight lines L1=0 and L2=0, and L1L2=0 denotes the joint equation of L1=0 and L2=0.

ax2+2hxy+by2+2gx+2fy+c=0 when we extend the above equation. This is a non-homogeneous second degree equation in x and y.
If a,b,h are not all zero, the general equation of a second degree homogeneous equation in x and y is ax2+2hxy+by2=0.
ax2+2hxy+by2=0 ,a pair of straight lines that pass through the origin

If a,b,h are not all zero, the general equation of a second-degree non-homogeneous equation in x and y is ax2+2hxy+by2+2gx+2fy+c=0.

Formulas for a Pair of Straight Lines
The following is a list of pair of straight lines formulas:
1. ax2+2hxy+by2=0 is a second-degree homogeneous equation that depicts a pair of straight lines flowing through the origin.
As a result, if h2(greater than)ab, the two straight lines are distinct and real
The two straight lines are coincident if h2=ab
If h2(less than)ab, the two straight lines with the origin as the point of intersection are imaginary

Angle Formed by Two Straight Lines
Consider the equation
ax2+2hxy+by2=0 ……(1)
for a pair of straight lines passing through the origin.
Let the slopes of these two lines be m1 and m2. By y dividing (1) by x2 and substituting y/x=m, we get
bm2+2hm+a=0
The roots of this quadratic in m will be m1 and m2. As a result, m1+m2= –2h/b and m1m2=ab.
The angle formed by the two lines is θ
Then,
tanθ=∣m2–m1|/|1+m2m1∣
=∣√(m1+m2)2–4m1m2/√1+m2m1∣
=∣√(–2h/b)2–4a/b/|√1+ab|
tanθ=∣2√h2–ab/a+b∣

The following are the outcomes of a general second-degree equation: ax2+2hxy+by2+2gx+2fy+c=0, which represents a pair of straight lines.
1. If ax2+2hxy+by2+2gx+2fy+c=0 denotes a pair of straight lines, the sum of their slopes is –2h/b and their product is a/b.
2.If tanθ=0, two lines will be parallel or coincident. i.e. if h2–ab=0
3. If tanθ is not defined, a+b=0, two lines will be perpendicular.
4. If the coefficient of xy=0, i.e. if h=0, two lines will be equally inclined to the axes.
5. The angle formed by two straight lines is given by tanθ=|2√h2–ab|/|a+b|.

Abstract Algebra
   • Set Theory ⏯️  

#drcolleger
#pairofstraightlines
#bsccbcsmathematics
#pairofstraightlinesclass11
#pairofstraightlinesclass12
#twodimensionalanalyticalgeometry
#twodimensiongeometry
#pairoflinearequations
#pairoflinearequationsintwovariablesclass10
#pairoflinearequationsintwovariables10thclass
#cbcsmath
#bscmathematics
#2dgeometry
#coordinategeometry
#transformationofaxes

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]