Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The Keller-Segel model on the sphere with strong reaction term and nutrient diffusion 2

  • Nils Berglund
  • 2025-08-20
  • 298
The Keller-Segel model on the sphere with strong reaction term and nutrient diffusion 2
Probability theoryStochastic processes
  • ok logo

Скачать The Keller-Segel model on the sphere with strong reaction term and nutrient diffusion 2 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The Keller-Segel model on the sphere with strong reaction term and nutrient diffusion 2 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The Keller-Segel model on the sphere with strong reaction term and nutrient diffusion 2 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The Keller-Segel model on the sphere with strong reaction term and nutrient diffusion 2

In this variant of the video    • The Keller-Segel model on the sphere with ...   , the reaction term is twice as strong, leading to smaller "domains" between the spots of high organism concentration. I had to add a limiter to the field k(u) to avoid blow-up. I liked the tesselation of the sphere obtained in this way.
Chemotaxis is the motion of life forms induced by a chemical, such as a nutrient. The Keller-Segel model involves two fields: the concentration of the life form, for instance slime molds, and the concentration of the nutrient. The organisms follow the gradient of concentration of the nutrient to reach higher concentrations, thereby depleting the nutrient, which regenerates at a given rate. If u and v denote the concentrations of slime molds and nutrient, the equations are reaction-diffusion equations of the form
d_t u = Delta(u) - div(k(u)*grad(v)) + u(1-u)
d_t v = D*Delta(v) + u-a*v,
where Delta denotes the Laplace operator, div is the divergence and grad is the gradient. D measures the diffusion of the nutrient, while a measures how fast the organisms deplete the nutrient. k(u) measure the influence of the organisms' concentration on how quickly they follow the nutrient gradient, and is given here by k(u) = c*u*(1+u²). The usual choice is k(u) = c*u/(1+u²), but I did not find parameter values leading to interesting dynamics with that k.
This video has two parts, showing the same simulation with two different representations.
3D view: 0:00
2D view: 1:14
The color hue and the z-coordinate depend on the concentration of the organisms. The peaks have been truncated at a given height for more visibility, actually they form much higher cusps. The observer rotates around the sphere on a circular orbit in a plane containing the center of the sphere. A line starting from above the north pole, and perpendicular to the polar axis, aims at making this motion more visible.
The simulation shows some instability from 0:13 to 0:21. The simulation mesh is obtained by projecting a regular grid on the faces of a cube onto the sphere, and the instability occurs at the projection of a corner of the cube. Some limiters have been put on the fields to avoid blow-up.

This simulation is inspired by the online simulator
https://visualpde.com/sim/?preset=Kel...
that allows you to explore the effect of the different parameters on the system.

Render time: 3D part - 28 minutes 6 seconds
2D part - 29 minutes 42 seconds
Color scheme: Viridis by Nathaniel J. Smith, Stefan van der Walt and Eric Firing
https://github.com/BIDS/colormap

Music: "Talk" by Anno domini Beats‪@AnnoDominiBeats‬

See also https://images.math.cnrs.fr/Des-ondes... for more explanations (in French) on a few previous simulations of wave equations.

#chemotaxis #reaction_diffusion #Keller_Segel

The simulation solves a partial differential equation by discretization.
C code: https://github.com/nilsberglund-orlea...
https://www.idpoisson.fr/berglund/sof...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]