Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть AI's "Secret Sauce": Attention & Transformer Models Explained

  • Ian Ochieng AI
  • 2025-08-14
  • 76
AI's "Secret Sauce": Attention & Transformer Models Explained
Attention MechanismSelf AttentionTransformer ModelArtificial IntelligenceDeep LearningNatural Language ProcessingNLPMachine LearningAI ExplainedData Science
  • ok logo

Скачать AI's "Secret Sauce": Attention & Transformer Models Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно AI's "Secret Sauce": Attention & Transformer Models Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку AI's "Secret Sauce": Attention & Transformer Models Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео AI's "Secret Sauce": Attention & Transformer Models Explained

🚀 Ever wonder how AI models like GPT and BERT actually understand language? The secret is the Attention Mechanism! This deep dive unpacks how self-attention and multi-head attention work, moving beyond keywords to grasp context, meaning, and long-range dependencies in data.

In this episode, you'll learn:
🧠 The Problem Before Transformers: Understand the limitations of older models like RNNs (forgetting) and CNNs (local focus) for processing long sequences.
💡 The Self-Attention Breakthrough: Discover how self-attention allows AI to look at an entire sequence at once and dynamically weigh the importance of every word in relation to every other word.
🔑 Query, Key, Value (QKV) Framework: Get an intuitive explanation of the QKV model – the core building block of how attention calculates relevance and context.
⚙️ Scaled Dot-Product Attention: We'll walk through the 4 key steps (score, scale, softmax, aggregate) that create the final contextualized understanding.
🤖 Multi-Head Attention Power: Explore why running multiple "attention heads" in parallel enables the AI to focus on different aspects (syntax, semantics, etc.) simultaneously for a richer, more robust analysis.

We break down the step-by-step process of:
How the Query, Key, and Value vectors are created.
The mathematical flow of Scaled Dot-Product Attention.
How Multi-Head Attention splits, processes, and combines information.
Where attention is used within the full Transformer architecture (encoder, decoder, cross-attention).
Compare the static, sequential processing of older models with the dynamic, parallel processing power of attention-based Transformers.

Gain special insights into:
🔥 The famous analogy: "The animal didn't cross the street because it was too tired." See how attention solves this.
✨ The "panel of experts" analogy for understanding Multi-Head Attention.
🤔 The critical role of Positional Encodings to give transformers a sense of word order.
📈 The challenge of quadratic complexity and the research into more efficient attention mechanisms (sparse, linear).
Subscribe for more deep dives into core AI concepts! 👍 Like this video if you now understand AI's "secret sauce," and comment below: What's the most surprising thing you learned about how attention works?

TIMESTAMPS:
00:00 Intro: AI's Secret Sauce - Attention Mechanisms
02:00 The Problem: Limitations of Pre-Transformer Models (RNNs, CNNs)
04:15 The Breakthrough: Self-Attention Explained
05:45 The Spotlight Analogy for Self-Attention
06:45 The Query, Key, Value (QKV) Framework
08:45 How Attention is Calculated: Scaled Dot-Product Attention
09:15 Step 1: Compute Attention Scores (Dot Product)
10:00 Step 2: Scaling (Why it's important)
11:00 Step 3: SoftMax Normalization (Creating Attention Weights)
12:00 Step 4: Weighted Aggregation (Creating Contextual Representation)
13:15 The Need for Multi-Head Attention (Ambiguity & Diverse Focus)
15:30 How Multi-Head Attention Works (Parallel Heads, Concatenation)
16:45 The "Panel of Experts" Analogy
17:30 Advantages of Multi-Head Attention (Diverse Focus, Robustness)
19:15 The Bigger Picture: Role of Positional Information (Encodings)
21:00 Attention in the Transformer Architecture (Encoder, Decoder, Cross-Attention)
23:45 The Challenge: Quadratic Complexity & Efficiency Improvements
25:15 The Intuitive Power of Attention Mechanisms
27:00 Recap & The Future of Attention
29:30 Call to Action & Podcast Info

TOOLS MENTIONED:
Transformer (Model Architecture)
GPT (Generative Pre-trained Transformer)
BERT (Bidirectional Encoder Representations from Transformers)
RNN (Recurrent Neural Network)
CNN (Convolutional Neural Network)
NumPy
Pandas
Matplotlib
(Note: Vision Transformers (ViTs) mentioned as an application area)


CONTACT INFORMATION:
🌐 Website: ianochiengai.substack.com
📺 YouTube: Ian Ochieng AI
🐦 Twitter: @IanOchiengAI
📸 Instagram: @IanOchiengAI

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]