Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть An introduction to multiobjective optimization problems in nonlinear circuits and systems

  • 一般社団法人 電子情報通信学会 IEICE
  • 2024-09-06
  • 123
An introduction to multiobjective optimization problems in nonlinear circuits and systems
Multiobjective OptimizationPareto FrontEvolutionary AlgorithmsNonlinear CircuitsParameter SpacePiecewise Linear ModelingRecurrent Neural Networks (RNNs)Signum Activation FunctionTernary Connection ParametersNumerical Analysis多目的最適化パレートフロント進化的アルゴリズム非線形回路パラメータ空間区分線形モデリング再帰型ニューラルネットワーク(RNN)シグム関数三元接続パラメータ数値解析英語目的関数最適化アルゴリズム多目的進化アルゴリズムパレート最適性トレードオフ分析回路設計電力電子工学安定性分析活性化関数メモリネットワーク疎接続計算複雑性ヒューリスティック手法ベンチマーク問題アルゴリズム効率Pareto Optimality
  • ok logo

Скачать An introduction to multiobjective optimization problems in nonlinear circuits and systems бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно An introduction to multiobjective optimization problems in nonlinear circuits and systems или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку An introduction to multiobjective optimization problems in nonlinear circuits and systems бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео An introduction to multiobjective optimization problems in nonlinear circuits and systems

IEICE English Webinar Distinguished Lecturer Program Series August 2024

"An introduction to multiobjective optimization problems in nonlinear circuits and systems"
Lecturer: Prof. Toshimichi Saito
Electrical and Electronics Engineering Department, Hosei University

Biography:
Toshimichi Saito received the B. E., M. E., and Ph. D. degrees in electrical engineering from Keio university, Yokohama, Japan, in 1980, 1982 and 1985, respectively. He is currently a full professor at Hosei university, Tokyo. His research interests include chaos and bifurcation, analysis/synthesis of artificial neural networks, and power electronics. He served in several editorial boards including the IEEE Trans. Circuits Syst. I (2000-2001), the IEEE Trans. Circuits Syst. II (2003-2005), and the Elsevier Intl. J. Electronics and Communications (2010-2014). He is a life senior member of the IEEE and a fellow of the IEICE.

Summary:
Multiobjective optimization problems require simultaneous optimization of multiple objectives (e.g., cost and performance). In the problem, we often encounter trade-offs: an improvement in one objective causes deterioration in other objectives. The trade-off is characterized by the Pareto front. Efficient evolutionary algorithms have been presented to calculate the Pareto front. The problems have been studied intensively in benchmarks (e.g., the multiobjective 0–1 knapsack problem). However, the studies in nonlinear circuits and systems are not sufficient. The reasons include huge parameter space and complicated calculation of the objectives. For simplicity, we introduce two example problems.

(1) Biobjective optimization problems in switching power converters with photovoltaic inputs. The circuits play important roles in renewable energy supply in carbon neutral technology. The first objective evaluates power efficiency and the second objective evaluates circuit stability. Applying piecewise linear modeling, the two objectives are described theoretically and the Pareto front is obtained exactly. The Pareto front guarantees existence of a trade-off between the two objectives
(2) Biobjectve optimization problems in discrete-time recurrent neural networks as associative memories. The first objective evaluates memory stability and the second objective evaluates connection sparsity. In order to realize precise calculation, we consider the case where the networks are characterized by the signum activation function and ternary connection parameters. Performing precise numerical analysis in typical examples, the Pareto-fronts are obtained.

Based on the two examples, several research directions/themes are suggested. This lecturer is grateful if the suggestions give some hint to studies in young researchers/students.

Send Feedback:
https://forms.office.com/r/dF7Cm1vZMS

Follow us on Twitter: @Ieice_trans

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]