Complete Time Series Analysis for Data Science | Data Analysis | Full Crash Course | Statistics

Описание к видео Complete Time Series Analysis for Data Science | Data Analysis | Full Crash Course | Statistics

📈 Complete Time Series Analysis eBook + Python Notebook (Written by me covering all topics): https://topmate.io/ayushi_mishra/1229949


Master Time Series Analysis for Data Science & Data Analysis in 3 hours. This comprehensive Crash Course covers EVERYTHING you need to know, from Stationarity, Forecasting models to Time series data preprocessing. Whether you're a complete beginner or looking for a refresher, this video is your one-stop shop for conquering Data Science Time Series Analysis!

All topics are implemented using Python

➖➖➖➖➖➖➖➖➖➖➖➖
👍 Subscribe for more Data Science content: https://bit.ly/48MFgCf

🔥 Book 1:1 call with me (Career Guidance, Resume Review, LinkedIn Profile Review) : https://topmate.io/ayushi_mishra/133733
➖➖➖➖➖➖➖➖➖➖➖➖➖

✅ 7+Data Analysis Portfolio Ready Projects Resources: https://topmate.io/ayushi_mishra
➖➖➖➖➖➖➖➖➖➖➖➖➖
✅ Job Preparation and Interview Guide: https://topmate.io/ayushi_mishra/842027
➖➖➖➖➖➖➖➖➖➖➖➖➖
Follow me on:

✅LinkedIn:   / ayushi-mishra-30813b174  
✅Instagram:   / techie.data  

Timestamps:

00:00 Complete Syllabus and importance of time series analysis
11:06 Ebook and Python Notebook Introduction
11:55 Time Series Data
14:49 Time Series Data Characteristics
18:18 Time Series Analysis
22:31 Time Series Decomposition
30:02 Additive and Multiplicative Decomposition methods
33:48 Classical Decomposition
37:35 STL Decomposition using LOESS
38:49 Difference between STL and classical decomposition
42:15 STL decomposition using Python
43:31 Stationarity in Time series
45:28 Why do we need stationary time series data?
49:03 Weak Stationary and Strict Stationary
57:05 Testing for stationarity
57:39 Augmented Dickey-Fuller (ADF) test
1:00:12 Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
1:03:29 Kolmogorov–Smirnov test (K–S test or KS test)
1:11:15 Non stationary data to stationary data
1:11:34 Differencing
1:14:00 Transformation
1:15:24 Logarithmic Transformation | Power Transformation | Box Cox Transformation
1:16:41 Detrending and seasonal adjustment
1:28:07 White Noise and Random Walk
1:35:28 Time Series Forecasting Models
1:37:19 Autoregressive (AR)
1:41:20 Moving Average (MA)
1:46:14 Autoregressive Moving Average (ARMA)
1:48:10 Autoregressive Integrated Moving Average (ARIMA)
1:51:01 Seasonal Autoregressive Integrated Moving Average (SARIMA)
1:54:51 Vector AutoRegressive (VAR) | Vector Moving Average (VMA) | Vector AutoRegressive Moving Average (VARMA) | Vector AutoRegressive Integrated Moving Average (VARIMA)
1:55:37 Granger causality test
1:57:31 Time Series Forecasting using Python
2:07:58 Smoothing Methods
2:10:00 Moving Average (Simple, Weighted, Exponential)
2:14:44 Exponential Smoothing
2:20:46 Autocorrelation (ACF) and Partial Autocorrelation Function (PACF)
2:28:15 Identifying models from ACF and PACF
2:34:47 Model evaluation metrics
2:34:54 Mean Absolute Error (MAE)
2:36:41 Mean Squared Error (MSE)
2:38:12 Root Mean Squared Error (RMSE)
2:38:44 Mean Absolute Percentage Error (MAPE)
2:39:41 Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
2:43:19 Time series data preprocessing
2:48:28 Resampling


🔗 Check out these other useful videos:

Data Analyst Roadmap:    • 3 Months Data Analyst Roadmap | Compl...  
Data Analysis Project using Python:    • Data Analysis End-to-End Project for ...  
Python vs R: Which is best for career? :    • Python VS R | Choose the RIGHT langua...  
Data Analysis Project using Python and SQL:    • Data Analysis SQL Project | Complete ...  

















Relevant Keywords:
Time series analysis
Time series forecasting
Time series analysis in statistics
Time series statistics
Time series forecasting python
Time series analysis python
Time series forecasting machine learning
Time series analysis for data science
Time series analysis for data analyst
Stock price prediction
Stock price prediction using python
Stock price prediction using machine learning
Data Analyst
Data Analytics
Data Analyst Project
Data Analysis project
Data Science
Data Science project
Data Analysis project for beginners
Data Science project for beginners
Data analysis using python
Data Science using python
Python
Python programming

Комментарии

Информация по комментариям в разработке