Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Avoiding Duplicates in Open Street Map Data Using Python

  • vlogize
  • 2025-04-05
  • 2
Avoiding Duplicates in Open Street Map Data Using Python
Avoid Duplicates in Open Street Map (Python)pythongeolocationopenstreetmaposmnxosmium
  • ok logo

Скачать Avoiding Duplicates in Open Street Map Data Using Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Avoiding Duplicates in Open Street Map Data Using Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Avoiding Duplicates in Open Street Map Data Using Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Avoiding Duplicates in Open Street Map Data Using Python

Learn how to effectively eliminate `duplicate entries` in your Open Street Map datasets when counting individual shops by shop type with Python.
---
This video is based on the question https://stackoverflow.com/q/77921063/ asked by the user 'gutmiz' ( https://stackoverflow.com/u/23332261/ ) and on the answer https://stackoverflow.com/a/77921150/ provided by the user 'scai' ( https://stackoverflow.com/u/1340631/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Avoid Duplicates in Open Street Map (Python)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Avoiding Duplicates in Open Street Map Data Using Python

When working with Open Street Map (OSM) data, particularly when counting individual shop types in a country, one common problem many face is the creation of duplicate entries. This issue arises because some shops are represented by multiple nodes due to their geographic coordinates. For example, a large department store might have multiple nodes scattered across different locations. In this guide, we will explore how to effectively avoid duplicates in your OSM dataset using Python.

The Challenge: Duplicates in the Dataset

The primary challenge stems from the fact that a single shop can appear as multiple nodes, particularly for larger establishments. In your case, you're using an osm.pbf dataset to count shops but running into duplicates when certain shops are mapped with different latitude and longitude coordinates.

Here's the code snippet you shared:

[[See Video to Reveal this Text or Code Snippet]]

While this code attempts to group shops by their names and IDs, you mentioned a critical issue: shops that are represented too closely in terms of their coordinates are not being captured separately when rounded.

The Solution: Focus on the Building Representation

To effectively address this problem and avoid duplication, there are certain strategies you should consider:

1. Utilize Way Data Instead of Node Data

When identifying shops, you should focus on elements tagged as shop=*. Typically, shops are represented as buildings in OSM, meaning that they consist of multiple nodes (the outline of the building). The nodes alone will not have the shop=* tag; rather, the way that corresponds to the building will.

2. Modify Your Code

To implement these changes, adjust your existing code to prioritize ways with the shop tag. Below is a revised approach.

[[See Video to Reveal this Text or Code Snippet]]

3. Collect Representative Nodes for Each Shop

In the modified code, we collect nodes associated with each way representing a shop. This way, you avoid capturing multiple nodes for the same shop and ensure each establishment is only counted once.

4. Further Techniques to Avoid Overlap

If you still find that some shops are too closely located, consider implementing additional mechanisms for filtering based on distance, or aggregating data based on thresholds for latitude and longitude. This would help maintain distinct entries while ensuring accuracy.

Conclusion

Eliminating duplicates from your Open Street Map dataset is crucial for ensuring the integrity of your data analyses. By redirecting your focus from nodes to the building representation of shops (ways), you can effectively collect and count individual shops without the risk of duplication. Implement the suggested code adjustments to streamline your data extraction process and enhance the quality of your geolocation insights.

With these methods, you are well-equipped to tackle the common obstacles in geospatial data management in Python. Start cleaning your datasets today!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]