Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Check if a Phone Number Follows a Specific Format in PySpark Using Regex

  • vlogize
  • 2025-09-28
  • 0
How to Check if a Phone Number Follows a Specific Format in PySpark Using Regex
pyspark check if value in the column adheres to a fixed formatpythonapache sparkpyspark
  • ok logo

Скачать How to Check if a Phone Number Follows a Specific Format in PySpark Using Regex бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Check if a Phone Number Follows a Specific Format in PySpark Using Regex или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Check if a Phone Number Follows a Specific Format in PySpark Using Regex бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Check if a Phone Number Follows a Specific Format in PySpark Using Regex

Learn how to validate phone numbers in a specific format using PySpark's powerful regex capabilities. This guide simplifies the process to ensure your data is clean and consistent.
---
This video is based on the question https://stackoverflow.com/q/63577745/ asked by the user 'akash sharma' ( https://stackoverflow.com/u/5318258/ ) and on the answer https://stackoverflow.com/a/63579297/ provided by the user 'Lamanus' ( https://stackoverflow.com/u/11841571/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pyspark check if value in the column adheres to a fixed format

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Checking Phone Number Format in PySpark

In the world of data processing, cleanliness and consistency are key. One common task is validating data formats, such as phone numbers. If you’re working with a dataset that includes a column for phone numbers, you may want to ensure that these numbers adhere to a specific format. In this guide, we'll explore a straightforward solution to verify that all entries in a phone number column conform to the format 804-8048888.

The Problem at Hand

Imagine you have a PySpark DataFrame that contains a column labeled phone_number. Your goal is to determine whether each value in this column matches the desired format:

Format: NNN-NNNNNNN (where N represents a digit)

However, due to the inclusion of a hyphen (-), you can't simply cast the values to integers and perform a validity check. Instead, you will need to leverage regex (regular expressions) to accomplish this task.

The Solution: Using Regex with PySpark

PySpark offers powerful functionalities that allow for complex expression evaluations. In our case, we can utilize the rlike() function to validate the format of phone numbers in the DataFrame. Here's how to implement it step-by-step.

Step 1: Create Your DataFrame

First, you'll need to create a DataFrame containing your phone numbers. Below is an example:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define the Validation Logic

Next, you can define a regex pattern to match the required format. The pattern will be ^[0-9]{3}-[0-9]{7}$, where:

^: Indicates the beginning of the string.

[0-9]{3}: Means exactly three digits (0-9).

-: Matches the hyphen character.

[0-9]{7}: Means exactly seven digits (0-9).

$: Indicates the end of the string.

Step 3: Use the withColumn Method

You can then add a new column to your DataFrame to indicate whether each phone number matches the specified pattern.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: View the Results

When you execute the above code, you will see an output that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

In this output:

The validate column tells us that the first phone number (804-8048888) is in the correct format (returns true), while the second one (1234567890) does not conform to the format (returns false).

Conclusion

Verifying that phone numbers adhere to a specific format within a PySpark DataFrame can be easily accomplished with the help of regex. By defining a pattern and using the rlike() function, you can efficiently check the validity of your data entries. This technique can be invaluable when ensuring that your datasets are both clean and reliable.

Start applying these methods to your datasets and maintain the integrity of your data!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]