Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть C4 Symmetry in Group Theory | Symmetry Elements & Operations Explained | Axis of Rotation

  • One Chemistry
  • 2025-08-26
  • 5423
C4 Symmetry in Group Theory | Symmetry Elements & Operations Explained | Axis of Rotation
C4 symmetryC4 axis in chemistryC4 symmetry in group theorygroup theory C4 rotationC4 symmetry examplesC4 axis in moleculesC4 symmetry operationsC4 group in mathematicsC4 axis symmetry elementsgroup theory symmetry operationsC4 axis square planarC4 axis XeF4cyclic group C4C4 symmetry point grouprotation axis C4molecular symmetry C4C4 group operationssymmetry in inorganic chemistrysquare planar symmetry C4group theory NEET JEE IIT JAM CSIR
  • ok logo

Скачать C4 Symmetry in Group Theory | Symmetry Elements & Operations Explained | Axis of Rotation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно C4 Symmetry in Group Theory | Symmetry Elements & Operations Explained | Axis of Rotation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку C4 Symmetry in Group Theory | Symmetry Elements & Operations Explained | Axis of Rotation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео C4 Symmetry in Group Theory | Symmetry Elements & Operations Explained | Axis of Rotation

C4 Symmetry in Group Theory – Simple Explanation

Introduction to Symmetry and Group Theory
In chemistry, symmetry helps us understand the structure and properties of molecules.
Group theory is the mathematical language used to describe symmetry.
Every molecule has some symmetry elements (like rotation axes, mirror planes, inversion centers).
When we apply these symmetry operations, the molecule may look the same as before.
These operations together form a group in mathematics.
One very important rotation axis is the C4 axis.

What is a C4 Symmetry Axis?
The letter C stands for proper rotation (from Latin “cyclic”).
The number 4 means rotation by 360° ÷ 4 = 90°.
So, a C4 axis allows the molecule to be rotated by 90°, 180°, 270°, or 360° and look the same.

Example of C4 Symmetry:
A square or square planar molecule like [PtCl₄]²⁻ or XeF₄ has a C4 axis perpendicular to the plane.
If you rotate the square by 90°, 180°, or 270°, it still looks the same.

Operations in C4 Symmetry
The C4 axis generates four rotation operations:
C4 (90° rotation) → The molecule looks the same after rotating by 90°.
C4² (180° rotation) → Two 90° rotations; molecule looks the same.
C4³ (270° rotation) → Three 90° rotations; molecule looks the same.
C4⁴ (360° rotation = identity, E) → Full rotation, molecule is unchanged.
This group is called a cyclic group (C4 group).

Importance of C4 Symmetry in Chemistry
🔹 1. Molecular Shapes
Many molecules like XeF₄, PtCl₄²⁻, and square rings (cyclobutane) show C4 symmetry.
Helps classify molecules into point groups in group theory.
🔹 2. Spectroscopy
Symmetry decides which molecular vibrations are IR active or Raman active.
For C4 molecules, vibrations repeat after 90° rotation.
🔹 3. Molecular Orbital Theory
Symmetry helps simplify orbital combinations in molecules.
C4 symmetry restricts how orbitals overlap.
🔹 4. Exams (NEET, JEE, IIT-JAM, CSIR-NET)
You must recognize C4 in square planar complexes.
C4 symmetry = rotation by 90°.
Belongs to C4 group (cyclic group of order 4).

✅ Summary
C4 axis = 90° rotation symmetry.
Example: square, XeF₄, PtCl₄²⁻.
Group elements: {E, C4, C4², C4³}.
Important for point groups, spectroscopy, and molecular orbital theory.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]