Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom

  • Apni ClassRoom Mathematics By Deepak Garg
  • 2020-12-09
  • 32
Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom
class 9 exercise 7.4 question number 6class 9 maths chapter 7 triangles exercise 7.4 question 6class 9th ncert maths chapter 7 triangles exercise 7.3 question 6triangles exercise 7.4 class 9 mathsclass 9 maths chapter 7 ncert exercise 7.4class 9 chapter 7 triangles exercise 7.4class 9 maths chapter 7 triangles exercise 7.4class 9 maths triangles chapter 7triangles chapter 7 class 9class 9 chapter 7 trianglestriangles class 9 solutionmaths class 9 by deepak garg
  • ok logo

Скачать Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom

Q6) EX 7.4 Class 9 Maths Chapter 7 Triangles | Maths Class 9 NCERT CBSE Solutions By Apni ClassRoom

Hello students, in this chapter you are going to learn triangles.

We will go topic wise

7. TRIANGLES
7.1 Introduction
7.2 Congruence of Triangles
7.3 Criteria for Congruence of Triangles
7.4 Some Properties of a Triangle
7.5 Some More Criteria for Congruence of Triangles
7.6 Inequalities in a Triangle

#mathsclass9th
#TrianglesMathsClass9th
#mathsclass9thChapeter7th
#TrianglesInMathsClass9th

class 9th exercise 7.4 question number 6,
class 9 maths chapter 7 triangles exercise 7.4 question 6,
class 9th ncert maths chapter 7 triangles exercise 7.4 question 6,
triangles exercise 7.4,
triangles class 9 ncert,
triangles class 9 maths,

Congruence of Triangles:
congruent’ means equal in all respects or figures whose shapes and sizes
are both the same).

Axiom 7.1 (SAS congruence rule) : Two triangles are congruent if two sides
and the included angle of one triangle are equal to the two sides and the included angle of the other triangle.

Theorem 7.1 (ASA congruence rule) : Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle.

Theorem 7.2 : Angles opposite to equal sides of an isosceles triangle are equal.
Theorem 7.3 : The sides opposite to equal angles of a triangle are equal.
Theorem 7.4 (SSS congruence rule) : If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent.
Theorem 7.5 (RHS congruence rule) : If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent.
Theorem 7.6 : If two sides of a triangle are unequal, the angle opposite to the longer side is larger (or greater).
Theorem 7.7 : In any triangle, the side opposite to the larger (greater) angle is longer.
Theorem 7.8 : The sum of any two sides of a triangle is greater than the third side.

In this chapter, you have studied the following points :
1. Two figures are congruent, if they are of the same shape and of the same size.
2. Two circles of the same radii are congruent.
3. Two squares of the same sides are congruent.
4. If two triangles ABC and PQR are congruent under the correspondence A ? P,
B ? Q and C ? R, then symbolically, it is expressed as ? ABC ? ? PQR.
5. If two sides and the included angle of one triangle are equal to two sides and the included angle of the other triangle, then the two triangles are congruent (SAS Congruence Rule).
6. If two angles and the included side of one triangle are equal to two angles and the included side of the other triangle, then the two triangles are congruent (ASA Congruence Rule).
7. If two angles and one side of one triangle are equal to two angles and the corresponding side of the other triangle, then the two triangles are congruent (AAS Congruence Rule).
8. Angles opposite to equal sides of a triangle are equal.
9. Sides opposite to equal angles of a triangle are equal.
10. Each angle of an equilateral triangle is of 60°.
11. If three sides of one triangle are equal to three sides of the other triangle, then the two triangles are congruent (SSS Congruence Rule).
12. If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangle, then the two triangles are congruent (RHS Congruence Rule).
13. In a triangle, angle opposite to the longer side is larger (greater).
14. In a triangle, side opposite to the larger (greater) angle is longer.
EXERCISE 7.4
1. Show that in a right angled triangle, the hypotenuse is the longest side.
2. In Fig. 7.48, sides AB and AC of ? ABC are extended to points P and Q respectively. Also, ? PBC ? QCB. Show that AC AB.
3. In Fig. 7.49, ? B ? A and ? C ? D. Show that AD BC.
4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD
(see Fig. 7.50). Show that ? A ? C and ? B ? D.
5. In Fig 7.51, PR PQ and PS bisects ? QPR. Prove that ? PSR ? PSQ.
6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]