Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Iterating Through Two DataFrames and Measuring Distances with Python and Pandas

  • vlogize
  • 2025-05-27
  • 0
Iterating Through Two DataFrames and Measuring Distances with Python and Pandas
How do I iterate through two data frames and perform a certain action when the values match?pythonpandas
  • ok logo

Скачать Iterating Through Two DataFrames and Measuring Distances with Python and Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Iterating Through Two DataFrames and Measuring Distances with Python and Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Iterating Through Two DataFrames and Measuring Distances with Python and Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Iterating Through Two DataFrames and Measuring Distances with Python and Pandas

Discover how to efficiently iterate through two DataFrames in Python using Pandas, match their ID values, and calculate distances using geolocation.
---
This video is based on the question https://stackoverflow.com/q/69706635/ asked by the user 'mohammad zain' ( https://stackoverflow.com/u/16447945/ ) and on the answer https://stackoverflow.com/a/69708625/ provided by the user 'Timus' ( https://stackoverflow.com/u/14311263/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do I iterate through two data frames and perform a certain action when the values match?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Iterating Through Two DataFrames and Measuring Distances with Python and Pandas

When working with data analyses, it’s common to find yourself needing to compare values between two datasets. One common scenario involves matching records in two DataFrames by a key, such as an ID, and then performing calculations based on other matching columns—in this case, geographic coordinates. This guide will guide you through how to efficiently perform these operations using Python and Pandas.

The Problem

Let’s consider two DataFrames: df1 and df2.

Example DataFrames:

[[See Video to Reveal this Text or Code Snippet]]

The task is to iterate over both DataFrames, match the entries based on the ID, and compute the distance between the geographical coordinates (lat/long) when IDs match.

Step-by-Step Solution

Step 1: Data Preparation

Before performing any calculations, ensure that the lat/long columns are properly formatted and contain tuples. If your lat/long columns contain string representations of tuples, you can convert them to actual tuples using the following command:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Merging DataFrames

Next, you need to merge the two DataFrames on the ID column. This will create a new DataFrame that contains records from both df1 and df2 where the IDs match:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Calculating Distances

To calculate the distance between the two geographic coordinates, you'll need a method to compute distances using the coordinates. A popular choice is the haversine function, which calculates the distance between two points on the Earth given their longitude and latitude.

First, ensure haversine is installed in your environment:

[[See Video to Reveal this Text or Code Snippet]]

Then, import it and utilize it to compute the distances in your newly merged DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Reviewing the Results

At this point, your df3 DataFrame should look something like this:

[[See Video to Reveal this Text or Code Snippet]]

The newly created Distance column reflects the computed distances between the corresponding coordinates from df1 and df2, where the ID matched.

Conclusion

By following these structured steps, you have successfully iterated through two DataFrames in Python, matched their IDs, and calculated distances between geographical coordinates. Utilizing Pandas and the haversine library makes this process seamless and efficient, a vital skill when dealing with data analysis involving geographic information.

This method can easily be adapted for larger datasets or different calculations as needed, allowing for flexibility in your data operations.

Feel free to reach out if you have any questions or need further clarification on any of the steps!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]