Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть What Causes Vanishing Gradients When Using Sigmoid Or Tanh? - AI and Machine Learning Explained

  • AI and Machine Learning Explained
  • 2025-09-08
  • 14
What Causes Vanishing Gradients When Using Sigmoid Or Tanh? - AI and Machine Learning Explained
A IA I ResearchActivation FunctionsBackpropagationDeep LearningMachine LearningNeural Network TrainingNeural NetworksRe L UVanishing Gradients
  • ok logo

Скачать What Causes Vanishing Gradients When Using Sigmoid Or Tanh? - AI and Machine Learning Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно What Causes Vanishing Gradients When Using Sigmoid Or Tanh? - AI and Machine Learning Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку What Causes Vanishing Gradients When Using Sigmoid Or Tanh? - AI and Machine Learning Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео What Causes Vanishing Gradients When Using Sigmoid Or Tanh? - AI and Machine Learning Explained

What Causes Vanishing Gradients When Using Sigmoid Or Tanh? Are you curious about why some neural networks struggle to learn effectively as they grow deeper? In this video, we’ll explain the reasons behind the vanishing gradient problem that occurs when using certain activation functions like sigmoid and tanh. We’ll start by describing how these functions behave mathematically and why their output saturates at extreme values. You’ll learn how this saturation causes derivatives to become very small, which in turn makes gradients diminish as they pass through multiple layers during training. We’ll discuss how this effect hampers the ability of early layers to update properly, leading to slow or stalled learning in deep neural networks. Additionally, we’ll compare sigmoid and tanh functions, highlighting their limitations and why modern neural network architectures often prefer alternatives like ReLU. Understanding the cause of vanishing gradients is essential for designing more efficient models that learn faster and perform better on complex tasks. Whether you’re a beginner or an experienced practitioner, grasping this concept will help you make informed choices about activation functions and network design. Join us to deepen your understanding of neural network training challenges and improve your AI development skills.

🔗H

⬇️ Subscribe to our channel for more valuable insights.

🔗Subscribe: https://www.youtube.com/@AI-MachineLe...

#NeuralNetworks #DeepLearning #MachineLearning #AI #ActivationFunctions #ReLU #VanishingGradients #Backpropagation #NeuralNetworkTraining #AIResearch #DeepLearningTips #MLAlgorithms #AIModels #DataScience #ArtificialIntelligence

About Us: Welcome to AI and Machine Learning Explained, where we simplify the fascinating world of artificial intelligence and machine learning. Our channel covers a range of topics, including Artificial Intelligence Basics, Machine Learning Algorithms, Deep Learning Techniques, and Natural Language Processing. We also discuss Supervised vs. Unsupervised Learning, Neural Networks Explained, and the impact of AI in Business and Everyday Life.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]