Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Matrices to Solve 3 Simultaneous Equations | Manually & with Python

  • Maker Vibe
  • 2022-04-27
  • 9066
Matrices to Solve 3 Simultaneous Equations | Manually & with Python
mathsmatricesmatrixmathalgebramathematicsequationsinversesimultaneousequationlinearsimultaneous equationssolving equations using matricesinverse of a matrixsolving matrix equationsdeterminanthow to solve equations with matricessimultaneous matricesmatrix equation solverhow to solve matrix equationsmatrix equationsusing matrices to solve equationsmachine learningdata sciencepythondataartificial intelligenceAIRoboticssympyprogramming
  • ok logo

Скачать Matrices to Solve 3 Simultaneous Equations | Manually & with Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Matrices to Solve 3 Simultaneous Equations | Manually & with Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Matrices to Solve 3 Simultaneous Equations | Manually & with Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Matrices to Solve 3 Simultaneous Equations | Manually & with Python

Learn how to solve a system of 3 simultaneous equations using matrices, with a pen and paper and with Python! In this video you will learn how to setup and solve matrix equations using exam-friendly pen and paper methods as well as how to use a Python library to solve the same problem. You will see how matrix equations are solved in the real world where pen and paper methods are too tedious and time-consuming.

#maths #matrices #python

You will learn step-by-step:
How to convert a system of 3 linear equations to a matrix equation
What definitions of matrix equations to use
How to evaluate the determinant of a 3x3 matrix
How to find the matrix of cofactors (adjoint) of a 3x3 matrix
How to find the inverse of a 3x3 matrix using its determinant and matrix of cofactors
How to solve for a vector of unknowns to find the required solution for simultaneous equations
How to import the required library inside of Python
How to define matrices using the Sympy Python library
How to find the vector of unknowns using Python computation


Chapter breakdown:
00:00 - Introduction to the problem
00:21 - What does it mean to solve a system of linear equations?
00:49 - Turning our 3 equations into one matrix equation
01:03 - Writing out our transformation matrix A, unknown vector u and constant vector k
02:28 - Inverting (rearranging) our equation for the unknown vector
03:22 - The formula for finding the inverse of a 3x3 non-singular matrix
04:06 - Finding the determinant of our matrix
08:12 - Finding and transposing the matrix of cofactors (adjoint)
11:55 - Finding the final values for x, y and z
14:45 - Looking at computational methods
15:05 - Importing the Sympy Python library
15:50 - Defining our matrix A and vector of constants k
16:53 - Previewing our matrix A in Python
17:08 - Solving our equation in 3 lines of Python code!


Don't forget to like, subscribe and let me know what you think in the comments below!













matrices, matrix algebra, simultaneous equations, mathematics, physics, data science, artificial intelligence, machine learning, python, programming

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]