Prove (dy/dx) = (d/dx)(√u) = (du/dx)/(2√u), if y = √u

Описание к видео Prove (dy/dx) = (d/dx)(√u) = (du/dx)/(2√u), if y = √u

The derivative of square root of u. Prove (dy/dx) = (d/dx)(√u) = (du/dx)/(2√u), or the derivative of y with respect to x is equal to the derivative of square root of u with respect to x is equal to the derivative of u with respect to x divided by 2 times the square root of u, if y = √u. √u = u^(1/2). Hence, y = √u = u^(1/2) = u^n, where n = 1/2. To prove this, we will employ the chain rule, and the power formula.

Mharthy's Channel's Playlists:

Differential Calculus    • Prove f'(x) = nx^(n-1), if f(x) = x^n...  

Complex Numbers    • Prove:⁡⁡  (a⁡+⁡b⁡i)(c⁡+⁡d⁡i)⁡ = ⁡(ac⁡...  

Conversions    • Conversions  

Logarithms, etc.    • Logarithms, etc.  

Analytic Geometry    • Analytic Geometry  

Plane Trigonometry Basics    • Plane Trigonometry Basics  

Fractions    • Fractions  

Systems of first degree/linear equations    • Systems of first degree/linear equations  

Exponents and Radicals    • Exponents and Radicals  

Quadratic Equation and Formula, etc.    • Quadratic Equation and Formula, etc.  

Division of Polynomials, etc.    • Division of Polynomials, etc.  

The Binomial Theorem    • The Binomial Theorem  

Trigonometric Formulas    • Trigonometric Formulas  

The Exact Values of sin & cos Functions of a Right Triangle    • The Exact Values of sin and cos Funct...  

Trigonometric Identities 1    • Trigonometric Identities 1  

Trigonometric Identities 2    • Trigonometric Identities 2  

Trigonometric Identities 3    • Trigonometric Identities 3  

Комментарии

Информация по комментариям в разработке