Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices

  • vlogize
  • 2025-04-03
  • 1
Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices
Numpy: access values of multidimensional array based on list of indicespythonnumpy
  • ok logo

Скачать Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices

A guide on how to efficiently access values in `Numpy` multi-dimensional arrays using lists of indices, complete with examples and explanations.
---
This video is based on the question https://stackoverflow.com/q/69380597/ asked by the user 'rv123' ( https://stackoverflow.com/u/3263841/ ) and on the answer https://stackoverflow.com/a/69380718/ provided by the user 'ddejohn' ( https://stackoverflow.com/u/6298712/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Numpy: access values of multidimensional array based on list of indices

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Accessing Values in Numpy Multi-dimensional Arrays Using Lists of Indices

When working with multi-dimensional arrays in Numpy, you may encounter scenarios where you need to extract specific values based on a list of indices. Understanding how to do this correctly can save you time and effort in your data analysis tasks. In this guide, we'll explore the best methods to access values in Numpy multi-dimensional arrays using lists of indices.

The Problem

Let’s consider a simple example. You have a multi-dimensional array like this:

[[See Video to Reveal this Text or Code Snippet]]

And you want to extract values based on a list of indices, such as:

[[See Video to Reveal this Text or Code Snippet]]

What you expect to get as a result is this:

[[See Video to Reveal this Text or Code Snippet]]

However, simply providing those indices is not sufficient for indexing multi-dimensional data. Let’s dive into the details of how to properly extract the desired values.

The Solution

To successfully access the required values from the array, you must specify the corresponding rows along with the desired columns. Here’s how you can do it step by step:

Step 1: Creating Row Indices

Since you want to get values from specific columns but need corresponding row information too, you can create an array of row indices using np.arange:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Understanding Advanced Indexing

Numpy requires you to provide lists of indices for each axis. The general syntax looks like this:

[[See Video to Reveal this Text or Code Snippet]]

If you replace axis_0_idxs and axis_1_idxs with the actual indices, you can also zip these indices to create coordinate tuples:

[[See Video to Reveal this Text or Code Snippet]]

Selecting Subarrays

If your goal is to select ALL values from certain rows together with ALL values from certain columns, you can use the np.ix_() method. This method creates a meshgrid from the given indices, making it easier to access subarrays.

For example, if we expand our operation to a larger array:

[[See Video to Reveal this Text or Code Snippet]]

In this case, np.ix_() helps to construct the full grid of indices required for accessing subarrays without needing to manually prepare lists of repeated entries. This results in a cleaner and more manageable approach.

Benefits of Using np.ix_()

Using np.ix_() allows for:

Easier Code: Reduces the complexity of index generation.

Flexibility: Can easily access non-square subarrays without additional calculations.

Performance: Optimized for performance compared to manually building lists for every dimension.

Conclusion

Understanding how to efficiently access multi-dimensional arrays in Numpy is a fundamental skill for anyone working with data. By leveraging techniques like np.arange() for row indices and np.ix_() for subarrays, you can streamline your workflows significantly. Whether you're extracting single values or creating complex subarrays, mastering these indexing strategies will enhance your data analysis capabilities in Python.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]