Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Selecting Specific Columns from a Merged DataFrame Using Python Pandas

  • vlogize
  • 2025-04-01
  • 1
Selecting Specific Columns from a Merged DataFrame Using Python Pandas
Select only certain columns from Merged dataframe using Python Pandaspythonpandas
  • ok logo

Скачать Selecting Specific Columns from a Merged DataFrame Using Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Selecting Specific Columns from a Merged DataFrame Using Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Selecting Specific Columns from a Merged DataFrame Using Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Selecting Specific Columns from a Merged DataFrame Using Python Pandas

Learn how to efficiently select specific columns from merged DataFrames in Python Pandas and avoid column name conflicts with easy merging techniques.
---
This video is based on the question https://stackoverflow.com/q/70757451/ asked by the user 'Jane Alice' ( https://stackoverflow.com/u/10145622/ ) and on the answer https://stackoverflow.com/a/70757759/ provided by the user 'cout112' ( https://stackoverflow.com/u/17436815/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Select only certain columns from Merged dataframe using Python Pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Selecting Specific Columns from a Merged DataFrame Using Python Pandas

When working with DataFrames in Python using the Pandas library, you might encounter scenarios where you need to merge two DataFrames and extract only certain columns from the resulting merged DataFrame. This task can become tricky, especially if both original DataFrames have columns with the same name, resulting in duplicate columns being suffixed with _x or _y. This blog will guide you on how to effectively select specific columns after merging two DataFrames while avoiding the hassles of naming conflicts.

Understanding the Problem

Let’s say you have two DataFrames loaded from Excel sheets representing your financial data: Receivables and Payables. Below is an illustration of how the data looks:

Receivables DataFrame (df1)

IDDollar TypeQ1Q2Q3Q41Receivables102030442Receivables11214154Payables DataFrame (df2)

Payable_IDDollar TypeQ1Q2Q3Q41Payables10-20-30-442Payables11-21-41-54After merging these two DataFrames based on their respective IDs, you may want to only keep specific columns and avoid appending of _x or _y to the column names. The challenge is to select columns correctly while merging to maintain clarity and readability in your results.

The Solution

To simplify the extraction of specific columns when merging DataFrames, follow these steps:

Step 1: Merge with Selected Columns

Instead of merging the entire DataFrames, select the specific columns you want from each DataFrame before merging. Here's how to do that:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Drop Unwanted Columns

After merging, you may find that the ID column from df1 is still present in the resulting DataFrame. You can easily drop this column using:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Rename Columns (if necessary)

If you want to avoid columns that were suffixed with _x and _y, you can rename them using the rename method. For example:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Combine Steps for a Compact Solution

You can also chain all these operations together to create a single line of code that accomplishes the task efficiently:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the above steps, you can effectively merge two DataFrames in Pandas, selecting only the columns you need without getting bogged down by unnecessary duplicates or suffixes. This method not only helps in maintaining clarity in your data but also enhances the overall efficiency of your data analysis tasks.

Feel free to apply this approach in your own DataFrame manipulations, and streamline your data processing tasks with ease!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]