Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Conditional Neural Field Latent Diffusion Model for generating Spatiotemporal Turbulence (Pan Du)

  • Frontiers in Scientific Machine Learning (FSML)@UM
  • 2025-06-20
  • 130
Conditional Neural Field Latent Diffusion Model for generating Spatiotemporal Turbulence (Pan Du)
#turbulence#data-driven-turbulence#videodiffusion#diffusion#genAI#superresolution#zeroshotlearning#neuralfields
  • ok logo

Скачать Conditional Neural Field Latent Diffusion Model for generating Spatiotemporal Turbulence (Pan Du) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Conditional Neural Field Latent Diffusion Model for generating Spatiotemporal Turbulence (Pan Du) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Conditional Neural Field Latent Diffusion Model for generating Spatiotemporal Turbulence (Pan Du) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Conditional Neural Field Latent Diffusion Model for generating Spatiotemporal Turbulence (Pan Du)

We were fortunate to hear about a generative model framework for complex turbulent flow simulations that can support a number of useful tasks, ranging from uncertainty quantification to flow super-resolution to reconstruction from sparse sensor measurements. This was work presented by Pan Du, currently a Ph.D. candidate at the University of Notre Dame. More details can be found below, and in his related paper: https://www.nature.com/articles/s4146....

Check out and enjoy this great talk with some beautiful visualizations of turbulence, and consider subscribing to this channel to be notified of future seminars.

Abstract:
Pan will present the CoNFiLD model, a novel generative framework for simulating complex turbulent flows in 3D irregular domains. While traditional eddy-resolved simulations are accurate, their high computational cost limits usability. CoNFiLD addresses this by integrating neural field encoding with latent diffusion, enabling efficient, probabilistic modeling of spatiotemporal dynamics. It supports a wide range of tasks—such as flow super-resolution, sparse reconstruction, and data restoration—via Bayesian conditional sampling, all without retraining. Results across diverse turbulent scenarios highlight its potential for advancing data-driven turbulence modeling.

Bio: Pan Du received his bachelor's degree in Thermal Engineering from Tsinghua University and completed his master's in Mechanical Engineering at Washington University in St. Louis. He is currently a Ph.D. candidate in Aerospace and Mechanical Engineering at the University of Notre Dame under the guidance of Prof. Jian-Xun Wang. Pan's research spans multiple disciplines, including scientific machine learning, Bayesian inference, uncertainty quantification, geometric deep learning, and computational fluid mechanics.

00:00 Start
02:43 Data-driven Turbulence Modeling
10:40 Generative AI Techniques
13:37 CoNFiLD and its Applications
20:21 Computational Cost of the Generative Framework
22:45 Zero-shot Conditional Generation
28:50 Super-resolution
30:46 Conclusion, Useful Links and Q&A

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]