Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The Recursive Language Model Revolution: Scaling Context by 100x

  • SciPulse
  • 2026-01-14
  • 120
The Recursive Language Model Revolution: Scaling Context by 100x
  • ok logo

Скачать The Recursive Language Model Revolution: Scaling Context by 100x бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The Recursive Language Model Revolution: Scaling Context by 100x или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The Recursive Language Model Revolution: Scaling Context by 100x бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The Recursive Language Model Revolution: Scaling Context by 100x

In this episode of SciPulse, we dive into a revolutionary shift in how Artificial Intelligence processes information: Recursive Language Models (RLMs). As Large Language Models (LLMs) tackle more complex, long-horizon tasks, they encounter a critical hurdle known as "context rot"—the inevitable decline in performance as prompts become increasingly longer.

Joining the frontier of inference-time scaling, researchers from MIT CSAIL have proposed a way to allow models like GPT-5 and Qwen3-Coder to process prompts that are two orders of magnitude larger than their physical limits.

In this episode, we discuss:

The Symbolic Shift: Why feeding long prompts directly into a neural network is failing, and why treating text as an external environment is the solution.

The REPL Advantage: How RLMs use a Python REPL environment to programmatically "peek" into, decompose, and recursively analyze massive datasets.

10 Million Tokens and Beyond: A look at how RLMs successfully navigate 10M+ token prompts in benchmarks like BrowseComp-Plus and OOLONG, significantly outperforming traditional retrieval and summarisation methods.

Efficiency vs. Complexity: Understanding why RLMs maintain strong performance on information-dense tasks where the answer depends on nearly every line of the prompt.

The Future of Deep Research: How "symbolic interaction" within a persistent programming environment could be the next axis of scale for AI.

Whether you are a machine learning researcher or just curious about the next step in AI evolution, this episode explains how we are moving from reasoning purely in "token space" to reasoning through structured, recursive execution.

Educational Disclaimer: This podcast provides an educational summary and discussion of the paper "Recursive Language Models." It is not a replacement for the original research, which contains the full technical methodology and experimental data.

YouTube Video:⁠    • Recursive Language Models: Scaling AI Cont...  

Explore the Research:https://arxiv.org/pdf/2512.24601

#AI #MachineLearning #LLM #RecursiveLanguageModels #ComputerScience #DeepLearning #ContextScaling #GPT5 #MITCSAIL #NLP #Research #TechPodcast #SciPulse #PythonREPL #ArtificialIntelligence

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]