Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть [Review] Data Science for Business (Foster Provost) Summarized

  • 9Natree
  • 2026-01-17
  • 4
[Review] Data Science for Business (Foster Provost) Summarized
Business: EntrepreneurshipEducation: Self-ImprovementTechnology
  • ok logo

Скачать [Review] Data Science for Business (Foster Provost) Summarized бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно [Review] Data Science for Business (Foster Provost) Summarized или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку [Review] Data Science for Business (Foster Provost) Summarized бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео [Review] Data Science for Business (Foster Provost) Summarized

Data Science for Business (Foster Provost)

Amazon USA Store: https://www.amazon.com/dp/1449361323?...
Amazon Worldwide Store: https://global.buys.trade/Data-Scienc...

Apple Books: https://books.apple.com/us/audiobook/...

eBay: https://www.ebay.com/sch/i.html?_nkw=...

Read more: https://mybook.top/read/1449361323/

#dataanalyticthinking #datamining #predictivemodeling #modelevaluation #businessanalytics #featureengineering #classification #analyticsstrategy #DataScienceforBusiness

These are takeaways from this book.

Firstly, Data analytic thinking as a business skill, A central theme of the book is that successful analytics starts before any model is built. Data-analytic thinking means translating a business objective into an analysis task with clear inputs, outputs, constraints, and decision consequences. The book clarifies how to distinguish between descriptive questions and predictive questions, and why predicting is only valuable when it changes a decision. It encourages readers to identify the action that will follow an insight, the population affected, and the cost of wrong decisions. This framing helps avoid the common failure mode of producing technically impressive results that do not map to a business lever. The authors also stress that analytics is probabilistic: predictions are rarely certain, so business value comes from managing uncertainty. By focusing on problem formulation, readers learn how to ask better questions of data teams, choose sensible success metrics, and recognize when an analysis is not answering the original need. This mindset supports better project scoping, clearer stakeholder alignment, and more reliable translation of analytical results into operational improvements.

Secondly, From raw data to useful features and reliable datasets, The book explains that data rarely arrives ready for modeling and that preparing it is not a clerical step but a major determinant of outcomes. It highlights how data is generated by business processes, which means it contains biases, missingness, and measurement quirks that can distort conclusions if ignored. Readers learn to think critically about what a variable actually represents, whether it would be available at the time a decision must be made, and how to avoid leakage where future information accidentally enters a training dataset. Another emphasis is the role of features, the constructed variables that capture patterns relevant to the target. Feature creation can encode domain knowledge, such as recency, frequency, and monetary value in customer behavior, or aggregations that summarize history. The book also discusses sampling, class imbalance, and the difference between data used for training versus evaluation. By grounding these ideas in business examples, it shows how data quality, definitions, and time windows can make a model appear strong in testing while failing in deployment, and how disciplined data preparation reduces that risk.

Thirdly, Modeling fundamentals: classification, probability, and interpretability, A core portion of the book introduces predictive modeling concepts with an emphasis on understanding rather than mathematics for its own sake. It covers classification tasks where the goal is to assign cases to categories such as churn versus retain, fraud versus legitimate, or responder versus non-responder. The book explains why models often output scores or probabilities, and how those scores support ranking and prioritization, which is frequently more useful than a hard yes or no prediction. It also addresses tradeoffs between model accuracy and interpretability, helping readers see when a simpler model that stakeholders can understand may outperform a more complex approach in real adoption. Key ideas include overfitting, generalization, and why training performance can be misleading. The discussion encourages readers to view modeling as a search for patterns that are stable enough to support decisions, not as discovering immutable truths. By connecting modeling choices to business constraints, the book equips readers to evaluate model outputs, ask what assumptions are embedded, and select approaches that align with operational needs and governance expectations.

Fourthly, Evaluation and decision thresholds: measuring what matters, The book emphasizes that model evaluation must match the business decision, not just a generic accuracy number. It explains how different error types carry different costs, such as missing a fraud case versus incorrectly flagging a legitimate transaction, or targeting an uninterested customer versus failing to contact a likely buyer. Readers are introduced to common evaluat

Комментарии

Информация по комментариям в разработке

Похожие видео

  • 🔥 Сколько зарабатывает бизнес-аналитик? | Зарплата бизнес-аналитика в Индии #Shorts #Simplilearn
    🔥 Сколько зарабатывает бизнес-аналитик? | Зарплата бизнес-аналитика в Индии #Shorts #Simplilearn
    1 год назад
  • Don't Become a Data Analyst if
    Don't Become a Data Analyst if
    1 год назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]