Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть AGGREGATIONS IN SPARK | SPARK INTERVIEW QUESTIONS

  • Tech With Machines
  • 2024-04-25
  • 69
AGGREGATIONS IN SPARK | SPARK INTERVIEW QUESTIONS
apachesparkaggregationsinsparkdataengineering#sparkarchitecturesparktutorialsparkinterviewquestionssparksparkarchitectureindepthsparkprogrammingsparkprojectssparkprojectsfordataengineerspredicatepushdownreparttitionvscoalescesparkseriesdatabrickssparksqlbigdatacoalescesparkperformancepysparkpartitiondatapipelinedockersparksql
  • ok logo

Скачать AGGREGATIONS IN SPARK | SPARK INTERVIEW QUESTIONS бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно AGGREGATIONS IN SPARK | SPARK INTERVIEW QUESTIONS или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку AGGREGATIONS IN SPARK | SPARK INTERVIEW QUESTIONS бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео AGGREGATIONS IN SPARK | SPARK INTERVIEW QUESTIONS

In Apache Spark, aggregations are operations that compute a summary statistic or combine values from a dataset to produce a single result or a smaller dataset. They are particularly useful for analyzing large volumes of data, allowing you to derive insights through functions like counting, summing, averaging, and more. Aggregation operations can be performed on both RDDs (Resilient Distributed Datasets) and DataFrames.

Key Characteristics of Aggregations
Reduction of Data: Aggregations typically reduce the size of the data by summarizing it, allowing for easier analysis and interpretation.

Distributed Computation: Aggregations leverage Spark's distributed computing capabilities, performing calculations in parallel across multiple nodes in a cluster.

Lazy Evaluation: Similar to transformations, aggregations are also lazily evaluated. They are not executed until an action is called.

Common Aggregation Functions
Here are some common aggregation functions and techniques used in Spark:

1. Count
Counts the number of elements in a dataset.

Example: To count the number of records in an RDD or DataFrame.
2. Sum
Calculates the total sum of a numeric column.

Example: To sum the values of a specific column in a DataFrame.
3. Average (Mean)
Computes the average value of a numeric column.

Example: To find the average age from a dataset containing ages.
4. Min and Max
Finds the minimum or maximum value in a dataset.

Example: To find the minimum and maximum temperatures from a weather dataset.
5. Group By
Groups the dataset based on one or more columns and allows you to perform aggregations on each group.

Example: Grouping sales data by product and calculating total sales for each product.
Aggregations with RDDs
To perform aggregations on RDDs, you can use functions like reduceByKey(), aggregate(), and countByKey(). Here’s how they work:

reduceByKey(func): This function is used on a (key, value) pair RDD to combine values with the same key using a specified function. It applies a local reduce operation on each partition before shuffling data across the network.

aggregate(zeroValue)(seqOp, combOp): This allows for more complex aggregations by specifying a zero value, a sequence operation, and a combination operation. It can be used to aggregate data in ways that are not limited to a simple sum or count.

Example of Aggregation with RDDs
Create a Pair RDD: You start with a pair RDD, for instance, containing sales data as (product_id, amount).

Aggregation:

Use reduceByKey to calculate total sales per product.
Action: Finally, call an action like collect() to retrieve the aggregated results.

Aggregations with DataFrames
DataFrames provide a more expressive and higher-level API for performing aggregations. Common methods include:

groupBy(): Groups the DataFrame by one or more columns.
agg(): Allows you to specify multiple aggregation functions to apply to different columns.
count(): Counts the number of rows in the DataFrame or grouped DataFrame.
mean(): Computes the average of a specified column.
Example of Aggregation with DataFrames
Load DataFrame: Load data into a DataFrame.

Group By: Use groupBy() to group the DataFrame by a specific column, such as product category.

Aggregate: Use agg() to compute statistics like total sales and average price for each category.

Action: Finally, execute an action like show() to display the aggregated results.

Conclusion
Aggregations in Spark are powerful tools for summarizing and analyzing large datasets. Whether using RDDs or DataFrames, Spark provides a variety of aggregation functions that enable efficient computations, making it easier to derive insights from data. Understanding these aggregation techniques is essential for effective data analysis and reporting in Spark applications.‪@TechWithMachines‬
#apachespark #spark #aggregation #aggregationinspark #dataengineering #dataengineeringessentials #dataengineer #datascience #programming #python #pythonbaba #pythonprogramming #chatgpt #chatgpt4 #bigdata #aggregationsinspark #sparktutorials #sparkforbeginners #apacheairflow #apachesparkinterviewquestions #sparkinterviewquestions #partition #partitioning #coding #bigdata #confluent #pyspark #apacheairflow #sql #datapipeline

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]