Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Expand a Grouped Value in Pandas

  • vlogize
  • 2025-04-06
  • 0
How to Expand a Grouped Value in Pandas
Expand a grouped value in pandaspythonpandas
  • ok logo

Скачать How to Expand a Grouped Value in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Expand a Grouped Value in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Expand a Grouped Value in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Expand a Grouped Value in Pandas

Learn how to effectively expand grouped values in a Pandas DataFrame by using the `transform` function. This guide provides a detailed explanation and example to help you master DataFrame manipulation.
---
This video is based on the question https://stackoverflow.com/q/78086220/ asked by the user 'Alexis' ( https://stackoverflow.com/u/11793491/ ) and on the answer https://stackoverflow.com/a/78086250/ provided by the user 'Cereveloper' ( https://stackoverflow.com/u/8252579/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Expand a grouped value in pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Expand a Grouped Value in Pandas: A Step-by-Step Guide

When working with data in Pandas, you might frequently face the task of aggregating values from a grouped DataFrame while retaining certain elements. For instance, you may want to sum a quantity for each product group and display that summation across a newly created column. This post will guide you through this process using a practical example and the correct approach.

Understanding the Problem

Let’s start by looking at the dataset we are working with:

[[See Video to Reveal this Text or Code Snippet]]

The DataFrame (df) appears as follows:

prodquantA2A3A4B3B1Now, suppose we want to summarize the quant values by the prod column and create a new column called added_gr that holds the sum of the quant for each product. The desired output should look like this:

prodquantadded_grA29A39A49B34B14The Challenge

You might attempt to achieve this with the following code:

[[See Video to Reveal this Text or Code Snippet]]

However, this will not produce the expected results, instead yielding NaN values. This is because the sum() function does not align the grouped sums with the original DataFrame index.

The Solution: Using transform()

To effectively compute the sum of the quantities while still aligning with the original DataFrame, you should utilize the transform() function. This function allows you to perform a group-wise operation and return a series that aligns with the original index.

Step-by-Step Implementation

Here's how to implement the solution using transform:

Import the required libraries:
Make sure you have both Pandas and NumPy imported.

[[See Video to Reveal this Text or Code Snippet]]

Create the DataFrame:
Create the DataFrame, as we did previously.

[[See Video to Reveal this Text or Code Snippet]]

Using groupby and transform:
Now, compute the sum of quant while using transform to maintain alignment.

[[See Video to Reveal this Text or Code Snippet]]

View the Final DataFrame:
Finally, print or view the updated DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

Your DataFrame will now correctly match the expected output:

prodquantadded_grA29A39A49B34B14Conclusion

Using the transform() function in conjunction with groupby is a powerful technique in Pandas for manipulating grouped data. It allows you to maintain the original DataFrame structure while performing aggregated calculations. Understanding this approach will greatly enhance your ability to work with data in Pandas, making your data analysis tasks more efficient and effective.

If you found this guide helpful or have any questions, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]