Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Effectively Remove Consecutive Duplicate Elements from a Pandas DataFrame

  • vlogize
  • 2025-10-05
  • 0
How to Effectively Remove Consecutive Duplicate Elements from a Pandas DataFrame
I am trying to remove duplicate consequtive elements and keep the last value in data frame using panpythonpandasdataframedrop duplicates
  • ok logo

Скачать How to Effectively Remove Consecutive Duplicate Elements from a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Effectively Remove Consecutive Duplicate Elements from a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Effectively Remove Consecutive Duplicate Elements from a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Effectively Remove Consecutive Duplicate Elements from a Pandas DataFrame

Learn how to remove consecutive duplicates in a Pandas DataFrame while keeping the last occurrence of each using a simple method.
---
This video is based on the question https://stackoverflow.com/q/67452237/ asked by the user 'Kshtj' ( https://stackoverflow.com/u/15874123/ ) and on the answer https://stackoverflow.com/a/67452320/ provided by the user 'DeGo' ( https://stackoverflow.com/u/9071288/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: I am trying to remove duplicate consequtive elements and keep the last value in data frame using pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Problem: Removing Consecutive Duplicates in a Pandas DataFrame

In data analysis, it's common to encounter scenarios where we have consecutive duplicate values in our datasets, which can affect our results if not addressed. For example, you may work with a DataFrame containing two columns, where one column represents grouped data and the second one contains corresponding values. Your goal might be to retain only the last occurrence of each value when the same value appears consecutively, while still maintaining the original order of elements.

The Challenge

Imagine you have the following two lists, representing some patches and their respective rewards:

[[See Video to Reveal this Text or Code Snippet]]

When we create a DataFrame and attempt to remove consecutive duplicates using the standard drop_duplicates method, we inadvertently lose elements not found consecutively. For example, the output after removing duplicates may not represent the values we actually want to keep.

The Desired Outcome

Given the above lists, our desired DataFrame should look like this:

[[See Video to Reveal this Text or Code Snippet]]

This means we need a method to retain the last occurrence of each consecutive duplicate value while preserving the initial order.

Solution: Using Grouping to Remove Consecutive Duplicates

To effectively handle this dilemma in Pandas, we can use a combination of techniques including grouping and cumulative summation. Let's break down the steps you need to follow.

Step-by-Step Guide

Create the DataFrame: First, initialize your lists and create a DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

Identify Consecutive Elements: Add a new column to identify groups of consecutive elements. We can achieve this by comparing each element with its previous one using the shift() method and then applying cumsum() to create a unique group identifier.

[[See Video to Reveal this Text or Code Snippet]]

Group and Aggregate: Now, we can group by the newly created group_id and use the last() function to keep the last occurrence of each group.

[[See Video to Reveal this Text or Code Snippet]]

View the Result: Finally, you can print the modified DataFrame to see the results.

[[See Video to Reveal this Text or Code Snippet]]

Final Output

After executing the above steps, your DataFrame will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By utilizing a combination of cumulative summation and grouping in Pandas, you can effectively remove consecutive duplicates from your DataFrame while maintaining the original order of data. This method is not only straightforward but also preserves the integrity of the data, making it a powerful tool for data manipulation in Python.

Feel free to experiment with this method on your own datasets to maintain clean and accurate records for your analysis!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]