Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть dkNET Webinar: Building Knowledge Graphs Towards Transparent Biomedical AI 03/14/2025

  • NIDDK Information Network (dkNET)
  • 2025-06-15
  • 34
dkNET Webinar: Building Knowledge Graphs Towards Transparent Biomedical AI 03/14/2025
dkNETNIDDK Information NetworkHIRNPanKbaseKnowledge graphAIMachine LearningData SciencebioinformaticsdiabetesgenomicsPrecision MedicinePanKgraphGLKBGenomicKBLLMType 1 Diabetes
  • ok logo

Скачать dkNET Webinar: Building Knowledge Graphs Towards Transparent Biomedical AI 03/14/2025 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно dkNET Webinar: Building Knowledge Graphs Towards Transparent Biomedical AI 03/14/2025 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку dkNET Webinar: Building Knowledge Graphs Towards Transparent Biomedical AI 03/14/2025 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео dkNET Webinar: Building Knowledge Graphs Towards Transparent Biomedical AI 03/14/2025

Presenter: Jie Liu, PhD, Associate Professor, Computational Medicine and Bioinformatics, Computer Science and Engineering, University of Michigan

Abstract
Knowledge graphs have recently emerged as a powerful data structure to organize biomedical knowledge with explicit representation of nodes and edges. The knowledge representation is in a machine-learning ready format and supports explainable AI models. In this talk, I will describe several knowledge graphs built in my lab or in a larger team, including Genomic Knowledge Base (GenomicKB, https://gkb.dcmb.med.umich.edu/), Genomic Literature Knowledge Base (GLKB, https://glkb.dcmb.med.umich.edu/), and PanKgraph, the knowledge graph within the PanKbase project (https://pankgraph.org/). I will focus on the scope of these knowledge graphs as well as how they support transparent and explainable AI, including using them in machine learning tasks, reducing hallucination of large language models (LLM), and helping experimental scientists explore their data for scientific discoveries.

The top 3 key questions that PanKgraph can answer:
1. Which genes are highly expressed in specific tissues (e.g., pancreatic islets) and have known functional roles in T1D?

Explanation: The scRNAseq expression data allows researchers to filter genes that show high tissue specificity in T1D-relevant organs.

2. How do SNPs influence quantitative trait loci (QTLs) of specific genes (e.g., CFTR) in specific tissues (e.g., pancreatic islets)?

Explanation: This question helps in understanding how genetic variations regulate gene expression in disease-relevant tissues, leveraging QTL and fine-mapped eQTL data.

3. What are the most studied genes related to critical T1D-related pathways (e.g., TCR signal processing)?

Explanation: By integrating pathway annotations and literature references, PanKGraph can highlight top genes studied in T1D-relevant signaling pathways, helping researchers prioritize targets for further investigation.

Upcoming webinars schedule: https://dknet.org/about/webinar

Webinar host and organizer: Ko-Wei Lin, PhD. NIDDK Information Network (dkNET; https://dknet.org), [email protected]

Video edited by: Ko-Wei Lin

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]