Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy

  • vlogize
  • 2025-03-29
  • 5
Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy
Pandas long to wide by subsetspythonpandasreshape
  • ok logo

Скачать Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy

Learn how to efficiently reshape your Pandas dataframe from long to wide format while handling subsets effectively. This guide provides step-by-step instructions and examples.
---
This video is based on the question https://stackoverflow.com/q/71081711/ asked by the user 'FlyingPickle' ( https://stackoverflow.com/u/6075349/ ) and on the answer https://stackoverflow.com/a/71085088/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas long to wide by subsets

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Reshaping a Pandas Dataframe: Long to Wide Conversion Made Easy

When working with data in Python using the Pandas library, one common task you might encounter is reshaping a dataframe from a long format to a wide format. While this may sound straightforward, it can sometimes present challenges, especially when you need to handle specific subsets of data. In this post, we’ll break down a practical example based on a real-world scenario that will guide you on how to efficiently reshape your dataframe.

The Problem: Reshaping the Dataframe

Imagine you have the following dataframe with multiple rows containing values related to different accounts over several weeks, representing tax, amount, and surcharge:

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to reshape this dataframe into a format where each row combines data from the past two weeks of each account. The desired output would look like this:

[[See Video to Reveal this Text or Code Snippet]]

To achieve this transformation, let’s explore the steps involved.

The Solution: Reshaping the Dataframe

Understanding the Methodology

Here’s the key aspect of the solution: instead of performing a simple pivot, which reshapes without creating additional rows, we will duplicate and shift the data to get the required wider format. Let's tackle this step by step.

Step 1: Group the Data

Firstly, we need to group the data by year and account, so we can manage the data properly:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Duplicate and Shift Data

Now, we will create two datasets: one for the current data and another for the previous data, and concatenate them:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Tidying Up the Result

At this point, we will have a dataframe that shows the reshaped data but it might still have some discrepancies with labels. To condense the process and eliminate NaNs, we can also use the following approach:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the steps outlined above, you can effectively reshape your Pandas dataframe from long to wide format by pulling in historical data for the past rows under the same account. This method ensures that you get a clear and organized dataset ready for analysis or reporting.

By mastering these techniques, you can handle a wide variety of data reshaping tasks in Python, making your data management more efficient and meaningful. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]