Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to GroupBy in Pandas and Keep the Most Repeated Value in a Column

  • vlogize
  • 2025-05-25
  • 0
How to GroupBy in Pandas and Keep the Most Repeated Value in a Column
pandas groupby based on multi-columns but keep the most repeated duplicates number on other columnpandasduplicatespandas groupby
  • ok logo

Скачать How to GroupBy in Pandas and Keep the Most Repeated Value in a Column бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to GroupBy in Pandas and Keep the Most Repeated Value in a Column или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to GroupBy in Pandas and Keep the Most Repeated Value in a Column бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to GroupBy in Pandas and Keep the Most Repeated Value in a Column

Learn how to effectively use Pandas to group data by multiple columns while retaining the most frequent values from another column. A complete guide to handling duplicates in your dataset.
---
This video is based on the question https://stackoverflow.com/q/71789790/ asked by the user 'Franke Hsu' ( https://stackoverflow.com/u/3063618/ ) and on the answer https://stackoverflow.com/a/71792603/ provided by the user 'Rushiraj Chavan' ( https://stackoverflow.com/u/14148419/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pandas groupby based on multi-columns, but keep the most repeated duplicates number on other column

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Handling Duplicates in Pandas: Grouping by Multiple Columns

In data analysis, especially when dealing with geographical coordinates or large datasets, you often encounter situations with duplicates. Let's say you have a table of geographic coordinates (lon, lat), along with some associated values. You want to group this data by lon and lat, but retain the most common value from another column, output. In this guide, we will walk through how to perform this operation efficiently using Pandas.

The Problem: Grouping by Multiple Columns with Duplicates

Imagine you have a dataset structured as follows:

lonlatoutput-47.812224-19.0433651890.283215-47.812224-19.0433651890.283215-47.812014-19.0070941813.785728-47.811177-19.0080531763.091936You want to keep the location coordinates unique by grouping the values, while still retaining the most repeated output value for each coordinate pair.

The Solution: Using groupby in Pandas

To achieve the outcome you desire, you can leverage the combination of Pandas' groupby() method paired with the agg() function to get the most repeated value (mode). Here’s how to do it step by step.

Step 1: Prepare Your Data

First, ensure that your data is loaded into a Pandas DataFrame. For example:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Group by lon and lat

Now use the groupby() function along with the agg() method:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Understanding the Code

groupby(['lon', 'lat']): This groups the DataFrame by the lon and lat columns, creating clusters of rows with the same values.

agg(pd.Series.mode): This will calculate the mode (most frequent value) of output for each group.

reset_index(): This resets the index for better readability and maintains the original DataFrame structure.

Performance Consideration

While the above code is effective, it is important to know that the apply method tends to be slower for large datasets because it processes data row-wise rather than using vectorized operations. Use the reset_index(inplace=True) technique to speed up the operation.

Final Result

After you run the code snippet, your resulting DataFrame will look similar to this, with unique entries for the coordinates and the most repeated output value for each group:

lonlatoutput-47.812224-19.0433651890.283215-47.812014-19.0070941813.785728-47.811177-19.0080531763.091936Conclusion

Using the groupby method in Pandas is a powerful way to manage duplicates in your dataset. By grouping by multiple columns and computing the most frequently occurring value in another, you can efficiently clean and organize your data for analysis. This technique is particularly useful in scenarios involving geographical data where coordinates may repeat but you want to maintain relevant measurements.

Feel free to reach out if you have any further questions or if you would like more examples!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]