Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables

  • vlogize
  • 2025-05-27
  • 2
Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables
Replace all pixels of multiple RGB values in OpenCVpythonnumpyopencv
  • ok logo

Скачать Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables

Struggling with slow pixel replacement in OpenCV? Learn how to efficiently replace multiple RGB values using Lookup Tables (LUT) to speed up your image processing tasks.
---
This video is based on the question https://stackoverflow.com/q/66616437/ asked by the user 'inconspicuoususername' ( https://stackoverflow.com/u/15389760/ ) and on the answer https://stackoverflow.com/a/66624499/ provided by the user 'Mark Setchell' ( https://stackoverflow.com/u/2836621/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Replace all pixels of multiple RGB values in OpenCV

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Replace All Pixels in OpenCV: A Guide Using Lookup Tables

Image processing can be a daunting task, especially when dealing with large images and extensive pixel manipulation. If you're a beginner grappling with OpenCV in Python, you might find yourself stuck when trying to replace multiple RGB values in an image. One common scenario is taking a large map and re-coloring various provinces to represent different countries. In this guide, we'll explore how to efficiently tackle this problem by using a technique known as Lookup Tables (LUT).

The Problem

You may have a large image — say a 5632x2048 pixel representation of the world, where each province is indicated by a unique color. Your goal is to replace these specific colors with new corresponding colors that represent different countries. However, your initial attempt at using a loop for pixel replacement was painfully slow, taking an excessive amount of time (50 minutes and counting…) for a task involving approximately 15,000 color replacements.

The Challenge:

Image Size: Large images can contain millions of pixels.

Color Replacements: A high number of distinct colors to replace results in lengthy processing times when done inefficiently.

Learning Curve: Beginners may be new to advanced concepts like vectorization.

The Solution: Using Lookup Tables

Instead of looping through each pixel, we can leverage the power of Numpy and Lookup Tables to speed up our operation significantly. Here's how you can do it step by step.

Step 1: Reshape the Image

First, let's import the necessary libraries and create our dummy image in the same size as ours:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Flatten the Image

Next, we'll convert this image into a tall vector containing its RGB values:

[[See Video to Reveal this Text or Code Snippet]]

This gives us a new shape of (11534336, 3).

Step 3: Create 24-bit Pixel Values

With the reshaped image, we will now flatten the RGB values into a single 24-bit value:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Setup the Lookup Table

Now we need to create a Lookup Table (LUT). Let’s initialize it for 24-bit colors:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Substitute Colors

You can define replacements in your LUT. For example:

[[See Video to Reveal this Text or Code Snippet]]

Step 6: Use the Lookup Table for Replacement

Finally, we can replace the original colors quickly:

[[See Video to Reveal this Text or Code Snippet]]

Step 7: Reconstruct the Image

Now that you have the result, it's time to reconstruct the image back into its original dimensions:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using Lookup Tables not only speeds up the pixel replacement process dramatically but also simplifies your code, helping you avoid inefficient loops. With just a few steps, you can efficiently replace multiple RGB values in large images using OpenCV and Numpy.

By implementing this optimized approach, you can re-color large maps or complex images in a fraction of the time, allowing you to focus more on enhancing your image processing skills! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]