Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть From Fire Hose to Real-Time Insights: Apache Flink 2.0 & Modern Data Engineering

  • Data-ML Engineer
  • 2025-06-15
  • 51
From Fire Hose to Real-Time Insights: Apache Flink 2.0 & Modern Data Engineering
ApacheFlinkFlink20DataEngineeringKafkaStreamProcessingRealTimeDataAIBigDataEdgeComputingCloudNativeDataPipelinesMLOpsApacheSparkDistributedSystemsDataArchitecture
  • ok logo

Скачать From Fire Hose to Real-Time Insights: Apache Flink 2.0 & Modern Data Engineering бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно From Fire Hose to Real-Time Insights: Apache Flink 2.0 & Modern Data Engineering или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку From Fire Hose to Real-Time Insights: Apache Flink 2.0 & Modern Data Engineering бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео From Fire Hose to Real-Time Insights: Apache Flink 2.0 & Modern Data Engineering

🚀 Apache Flink 2.0 just dropped - the first major release in 9 years! After 2 years of development and 165 contributors, this release fundamentally changes how we handle real-time data processing. Plus, discover how AI is revolutionizing data engineering itself.
🎯 What You'll Discover:
✅ Apache Flink 2.0 breakdown - disaggregated state, cloud-native architecture
✅ AI transformation in data engineering - automated pipelines, predictive maintenance
✅ Flink + Kafka synergy - building scalable real-time systems
✅ Edge computing integration - processing data where it's generated
✅ Battle-tested lessons - Salesforce scale optimization tips
✅ Real-world case studies - 40% delivery latency reduction
⏰ Key Timestamps:
00:00 - Introduction: The Data Engineering Revolution
02:00 - Traditional Data Engineering Pain Points
04:00 - How AI is Transforming Data Pipelines
08:00 - Apache Flink 2.0: 9 Years in the Making
12:00 - Stream-Batch Unification & AI Integration
14:00 - Flink + Kafka: The Perfect Partnership
18:00 - Edge AI: Processing at the Source
20:00 - Salesforce Scale: Terabyte-Level Optimization
24:00 - Challenges & Alternatives to Consider
🔥 Apache Flink 2.0 Game Changers:
Disaggregated State Management: Separates storage from compute for faster scaling
Cloud-Native Architecture: Built for Kubernetes and modern infrastructure
AI Model Integration: Call AI models directly in streaming pipelines
Enhanced Materialized Tables: Real-time updates + historical access
Adaptive Runtime Optimization: 8x performance boost on benchmarks
🤖 AI Integration Highlights:

Automated pipeline generation with AWS Glue, Informatica Claire
Predictive failure detection based on historical pipeline runs
Real-time sentiment analysis and anomaly detection in streams
Natural language to SQL transformation capabilities
Auto-scaling based on workload patterns

🚛 Real-World Success Story:
Logistics Company Edge Deployment:

Flink running on delivery trucks
Processing GPS, engine sensors, driver behavior
40% reduction in delivery latency
Source: https://www.kargin-utkin.com/real-time-dat...
Local processing + Kafka for central aggregation

⚡ Kafka + Flink Power Combo:
Kafka: Reliable message broker, shock absorber for data streams
Flink: Complex stream processing with stateful computation
Together: Handle fire hose of data with millisecond latency
🏭 Enterprise Use Cases:

Fraud Detection: Real-time transaction analysis with user behavior tracking
IoT Processing: Predictive maintenance, energy optimization
Personalization: Instant recommendation updates
Distributed Tracing: Multi-terabyte log processing (Salesforce case study)

🛠️ Performance Optimization Secrets:
Kafka Tuning:

Batch size and linger.ms optimization
Compression: gzip for costs, lz4 for performance
Partition strategy to avoid hotspots

Flink Optimization:

1-2 CPU cores per slot, memory is crucial
Async I/O for external calls
G1GC for garbage collection
Monitor backpressure religiously

⚠️ Real Talk - Flink Challenges:

Steep learning curve - complex state management concepts
Resource hungry - significant CPU/memory requirements
Limited documentation compared to Spark ecosystem
Operational complexity at scale requires expertise

🔧 When to Choose Alternatives:
Kafka Streams: Simpler streaming within applications
Materialize: SQL-based streaming database approach
Google Dataflow: Fully managed cloud service
RedPanda: Kafka-compatible with simplicity focus
🌐 Edge Computing Revolution:

Processing data at the source (trucks, factories, devices)
Lower latency, reduced bandwidth, improved privacy
Hybrid cloud-edge models for optimal performance
Flink's lightweight deployment enables edge scenarios

🎯 Perfect For:

Data Engineers building real-time systems
Platform Engineers evaluating streaming technologies
ML Engineers needing real-time inference pipelines
Enterprise Architects designing data platforms
Anyone dealing with high-volume, low-latency requirements

📊 Architecture Evolution:
Traditional: Batch processing, manual ETL, fragile pipelines
Modern: AI-automated, real-time streaming, self-healing systems
Future: Edge AI, distributed intelligence, autonomous data platforms

💬 Are you using Flink in production? Share your biggest streaming challenges and wins!
🔔 Subscribe for more deep dives into cutting-edge data engineering and real-time systems

Tags:
#ApacheFlink #Flink20 #DataEngineering #Kafka #StreamProcessing #RealTimeData #AI #BigData #EdgeComputing #CloudNative #DataPipelines #MLOps #ApacheSpark #DistributedSystems #DataArchitecture

⚡ The future of data engineering isn't just real-time - it's intelligent, automated, and distributed. Flink 2.0 is leading that charge!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]