Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Filter Elements in Each Row of a List[StringType] Column in a Spark DataFrame

  • vlogize
  • 2025-03-26
  • 0
How to Filter Elements in Each Row of a List[StringType] Column in a Spark DataFrame
How to filter out elements in each row of a List[StringType] column in a spark Dataframe?dataframescalaapache sparkapache spark sql
  • ok logo

Скачать How to Filter Elements in Each Row of a List[StringType] Column in a Spark DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Filter Elements in Each Row of a List[StringType] Column in a Spark DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Filter Elements in Each Row of a List[StringType] Column in a Spark DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Filter Elements in Each Row of a List[StringType] Column in a Spark DataFrame

Learn how to effectively filter elements within rows of an ArrayType column in a Spark DataFrame using UDFs.
---
This video is based on the question https://stackoverflow.com/q/72167505/ asked by the user 'Illustrious Imp' ( https://stackoverflow.com/u/11940879/ ) and on the answer https://stackoverflow.com/a/72168594/ provided by the user 'AminMal' ( https://stackoverflow.com/u/14672383/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to filter out elements in each row of a List[StringType] column in a spark Dataframe?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Filtering Elements in Each Row of a List[StringType] Column in a Spark DataFrame

When working with Spark DataFrames, you may find yourself in a situation where you need to filter elements within each row of a column that consists of an array of strings. This challenge can arise when you want to retain only specific elements based on a given dictionary.

Let’s dive into the problem and examine how to approach it step-by-step.

The Problem

You have a Spark DataFrame that contains an ArrayType column, and you'd like to filter the elements of each array based on a list of allowed values (a dictionary). For instance, given the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame looks like:

[[See Video to Reveal this Text or Code Snippet]]

And you want to filter this based on the following dictionary_list:

[[See Video to Reveal this Text or Code Snippet]]

The desired output should be:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this filtering, we'll utilize a User Defined Function (UDF) in Spark. Here’s how to implement the solution:

Step 1: Define the UDF

The first step is to create a UDF that takes an input sequence of strings and returns a filtered sequence containing only the elements present in your dictionary list. Here's how you can define it:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Use the UDF in the DataFrame Operation

Now that we have our UDF defined and registered, we can apply it to our DataFrame using the select operation. Remember that we need to use select instead of where, as we want to modify the contents of each row rather than filter out entire rows:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

When you run the code above, you should get the filtered DataFrame as follows:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By utilizing a UDF, you've successfully filtered elements within each row of the ArrayType column in your Spark DataFrame. This approach provides a flexible and efficient way to handle complex array manipulations in Apache Spark.

With this technique, you can apply similar logic to various data processing tasks, making your data analysis more powerful and tailored to your needs.

Now you can easily filter elements in your DataFrame's rows based on your specified criteria!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]