Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Calculating the Moving Average in SQL for a Specific Time Frame

  • vlogize
  • 2025-05-27
  • 3
Calculating the Moving Average in SQL for a Specific Time Frame
SQL Moving Average over specific timesqldatetimehiveimpalarolling average
  • ok logo

Скачать Calculating the Moving Average in SQL for a Specific Time Frame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Calculating the Moving Average in SQL for a Specific Time Frame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Calculating the Moving Average in SQL for a Specific Time Frame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Calculating the Moving Average in SQL for a Specific Time Frame

Learn how to calculate a rolling average over a specific timeframe using SQL, particularly in Impala and Hive. This guide covers practical examples and step-by-step instructions for your data analysis needs.
---
This video is based on the question https://stackoverflow.com/q/66028909/ asked by the user 'habarnam' ( https://stackoverflow.com/u/12716774/ ) and on the answer https://stackoverflow.com/a/66028976/ provided by the user 'Gordon Linoff' ( https://stackoverflow.com/u/1144035/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: SQL Moving Average over specific time

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Calculating the Moving Average in SQL for a Specific Time Frame

In the world of data analysis, calculating averages over specific time frames can be crucial for generating insights. If you're working with SQL and need to establish a moving average over a certain time interval, it can get tricky, especially when using systems like Impala and Hive that don’t have the same range of functions as Oracle or MS SQL. Today, we'll dive into how you can effectively do this using a practical example of timestamps and values.

The Problem: Rolling Average Calculation

Suppose you have a dataset that contains values paired with corresponding timestamps. As shown below:

[[See Video to Reveal this Text or Code Snippet]]

You want to add a new column for the rolling average of values within the last hour. The expected output would look like this:

[[See Video to Reveal this Text or Code Snippet]]

To achieve this, you can't simply use a window function that counts rows since the number can vary. Therefore, we need to implement a more sophisticated approach to cater to the varying volume of values.

The Solution: SQL Query for Moving Average

Step-by-Step Guide

While Hive supports range window frames, it allows usage only with numerical values and not time intervals. This is where converting timestamps into comparable numbers comes into play. Below is the SQL query that will do just that:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Query Components

ORDER BY unix_timestamp(timestamp): This clause orders the timestamps by converting them to Unix time, which allows the function to process them numerically.

RANGE BETWEEN 3559 PRECEDING AND CURRENT ROW: This specifies the moving average window. The 3559 seconds is equivalent to one hour minus one second. The reason for reducing it by one second is that the current row itself is included in the calculation.

Key Points to Remember

Using unix_timestamp is essential in this scenario as it transforms datetime values into a format suitable for numerical operations.

The use of RANGE ensures that we accurately capture the values for the last hour relative to each timestamp.

When calculating the average, it's important to understand the size of your window frame, particularly how you consider the current row in your calculations.

Conclusion

Calculating a moving average over specific time periods in SQL, especially in systems like Impala and Hive, requires a bit of creativity due to their limitations. By converting timestamps into a numeric format and leveraging window functions wisely, you can efficiently derive meaningful insights from your time-series data.

Whether you're analyzing performance metrics, financial data, or any timestamped values, understanding how to implement a moving average can significantly enhance your data analysis capabilities. Remember to apply these concepts carefully, and soon you'll find that handling time-based calculations in SQL becomes second nature.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]