Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Finding the Steady-State Solution in a 1D Heat Equation Using Fortran

  • vlogize
  • 2025-05-27
  • 1
Finding the Steady-State Solution in a 1D Heat Equation Using Fortran
if statement to determine steady-statefortran
  • ok logo

Скачать Finding the Steady-State Solution in a 1D Heat Equation Using Fortran бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Finding the Steady-State Solution in a 1D Heat Equation Using Fortran или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Finding the Steady-State Solution in a 1D Heat Equation Using Fortran бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Finding the Steady-State Solution in a 1D Heat Equation Using Fortran

Explore effective methods to determine the steady-state solution of a 1D heat equation using Fortran. Learn about different approaches and common pitfalls.
---
This video is based on the question https://stackoverflow.com/q/68911978/ asked by the user 'Jeff Faraci' ( https://stackoverflow.com/u/4538674/ ) and on the answer https://stackoverflow.com/a/68912681/ provided by the user 'francescalus' ( https://stackoverflow.com/u/3157076/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: if statement to determine steady-state

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Finding the Steady-State Solution in a 1D Heat Equation Using Fortran

When working with heat equations, especially in computational simulations, one frequently encounters the need to determine the steady-state solution. This represents a state where the system no longer changes over time—technically, it satisfies the condition that the difference between the current and the following time step is zero, i.e., u(t+ 1) - u(t) = 0.

In this guide, we will delve into the methods used to find this steady-state solution while also discussing common mistakes and their corrections based on a provided Fortran code.

Problem Overview

The primary objective here is to efficiently ascertain the steady-state solution for a function u(x,t) that describes the heat distribution over one-dimensional space. The code snippets provided in the original question outline three different approaches to achieve this, each with varying degrees of correctness.

While it’s not our goal to declare one method as superior to another, understanding the underlying execution and functionality of each method will help in identifying the best practices.

Method Analysis

Method 1

The first method follows this structure:

[[See Video to Reveal this Text or Code Snippet]]

Issues Identified:

Partial Condition Check: The main flaw is that it exits the loop after finding only one instance where the condition holds true. We want to check if all values are close to each other, not just any one instance.

Incorrect Loop Exit: The exit command only breaks out of the innermost loop, which doesn’t effectively stop the entire time iteration.

Method 2

In this approach, the condition is erroneously structured as follows:

[[See Video to Reveal this Text or Code Snippet]]

Issues Identified:

Invalid Array Expression: This line attempts to compare arrays directly, leading to a syntax error. Instead, we should check if all elements of the difference are below the threshold.

Correct Implementation:

You can write the check as:

[[See Video to Reveal this Text or Code Snippet]]

Method 3

This method used the following expression for checking convergence:

[[See Video to Reveal this Text or Code Snippet]]

Issues Identified:

Incorrect Norm Calculation: The comparison should be based on the difference between the two arrays rather than their norms separately, just like:

[[See Video to Reveal this Text or Code Snippet]]

Corrected Code Snippets

Now that we know the pitfalls, here’s the corrected approach you should integrate:

For Methods 1 and 2:

[[See Video to Reveal this Text or Code Snippet]]

For Method 3:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Finding the steady-state solution in a 1D heat equation is critical for many applications in computational simulations. By applying the appropriate checks and ensuring we are evaluating all necessary conditions, we can improve the accuracy and efficiency of our solution. This exploration has highlighted common problems in programming logic and syntax within Fortran that can lead to ineffective solutions.

By refining these methods, not only do we correct the original mistakes but also enhance our understanding of numerical methods in computational physics. If you have further questions or need clarification on specific points, feel free to leave a comment!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]