Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть RuCCS Colloquium- "Generative Modeling of Space, Time, and Objects..." Sungjin Ahn (CS, Rutgers)

  • Rutgers Center for Cognitive Science (RuCCS)
  • 2019-12-05
  • 482
RuCCS Colloquium- "Generative Modeling of Space, Time, and Objects..." Sungjin Ahn (CS, Rutgers)
RuCCSRutgersColloquiumCSSpaceTimeObjects
  • ok logo

Скачать RuCCS Colloquium- "Generative Modeling of Space, Time, and Objects..." Sungjin Ahn (CS, Rutgers) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно RuCCS Colloquium- "Generative Modeling of Space, Time, and Objects..." Sungjin Ahn (CS, Rutgers) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку RuCCS Colloquium- "Generative Modeling of Space, Time, and Objects..." Sungjin Ahn (CS, Rutgers) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео RuCCS Colloquium- "Generative Modeling of Space, Time, and Objects..." Sungjin Ahn (CS, Rutgers)

"Generative Modeling of Space, Time, and Objects: A First Step to Endowing Common Sense to Machines"

Nov19th, 2019 talk by Prof. Ahn

Abstract: Human intelligence is based on the ability to build the model of the world in our brain. Learning such world model is mostly unsupervised or self-supervised process. To obtain human-level general intelligence, an artificial agent should also be able to build the model of its environment. However, contemporary AI based on deep learning is lacking this ability and heavily relies on supervised pattern association. As a result, it misses one of the most critical abilities: common sense. In this talk, I present how an artificial agent can build the world model and its structured representation in an unsupervised fashion. In particular, I focus on how to model and represent space, time, and objects, the most critical aspects of the physical world. The presented models are based on probabilistic generative latent-variable modeling and thus can be used in AI as the engine for future imagination. I also discuss how this world model can be incorporated to an artificial agent in order to enable model-based reinforcement learning

Bio: Assistant Professor at the Department of Computer Science at Rutgers University- leads the Rutgers Machine Learning Group. His research focus- probabilistic agent learning- centers around (1) deep learning, (2) probabilistic inference, and (3) brain-inspired learning algorithms to make an AI agent that can learn the model of the complex and interactive world like humans.

Personal Webpage: http://www.sungjinahn.com/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]