Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Creating a New Variable in R Using ifelse to Mutate Multiple Columns

  • vlogize
  • 2025-05-25
  • 3
Creating a New Variable in R Using ifelse to Mutate Multiple Columns
Mutate IF ELSE MULTIPLE COLUMNSif statementdplyrconditional statementsmutated
  • ok logo

Скачать Creating a New Variable in R Using ifelse to Mutate Multiple Columns бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Creating a New Variable in R Using ifelse to Mutate Multiple Columns или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Creating a New Variable in R Using ifelse to Mutate Multiple Columns бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Creating a New Variable in R Using ifelse to Mutate Multiple Columns

Learn how to create a new variable in R with `ifelse`, combining values from multiple columns in your dataframe!
---
This video is based on the question https://stackoverflow.com/q/71593884/ asked by the user 'Johanna Ramirez' ( https://stackoverflow.com/u/1864535/ ) and on the answer https://stackoverflow.com/a/71594218/ provided by the user 'Gnueghoidune' ( https://stackoverflow.com/u/15508081/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Mutate IF ELSE MULTIPLE COLUMNS

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mutate Multiple Columns in R with ifelse

When working with data in R, you often find situations where you need to create new variables based on existing columns. One common problem is filling in missing values in one column by using values from another column. This post will guide you through the process of using the ifelse function in R to solve this problem efficiently.

The Problem Statement

Imagine you have a dataframe (df) consisting of two columns: LAB and OID. The goal is to create a new column called OID_new based on these two columns:

If the OID column has a missing value (indicated by NA), then OID_new should take the value from the LAB column.

If the OID column is not NA, then OID_new should just take the value from OID.

Here’s how the expected output looks:

[[See Video to Reveal this Text or Code Snippet]]

The Attempted Solution

Initially, you might write something like this:

[[See Video to Reveal this Text or Code Snippet]]

However, this code will not work as intended. Let’s break down why and how to fix it.

The Correct Approach

You can achieve creating the new variable using the ifelse() function more effectively by following these steps:

Key Points to Note

Using is.na():

Instead of checking OID == NA, you should use is.na(OID) to check for missing values because NA is not directly comparable with equality.

Output Statements:

ifelse() requires three arguments:

A test (in this case, checking if OID is NA using is.na(OID)).

The value to return if the test is TRUE (use LAB).

The value to return if the test is FALSE (use OID).

Piping with %>%:

When using the pipe operator %>%, you do not need to access the dataframe using the $ symbol.

Choosing the Right ifelse:

The base R ifelse() is preferred in this scenario for its simplicity, as the dplyr alternative if_else() might complicate the expected outcome due to type stability.

The Correct Code

The corrected code to create OID_new looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Output Example

After running the above code, the output should be:

[[See Video to Reveal this Text or Code Snippet]]

Data Structure

For reference, here’s how you can set up your original dataframe:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using ifelse to mutate multiple columns in your dataframe is a powerful method for managing data in R. By following these guidelines, you can effectively create new variables and handle missing data with ease. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]