Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Why C# .Net SIMD System.Numerics.Vector4 Might Be Slower Than a Simple Loop

  • vlogize
  • 2025-07-28
  • 5
Why C#  .Net SIMD System.Numerics.Vector4 Might Be Slower Than a Simple Loop
C# .Net SIMD System.Numerics.Vector4 slower than loopc#vectorizationsimd
  • ok logo

Скачать Why C# .Net SIMD System.Numerics.Vector4 Might Be Slower Than a Simple Loop бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Why C# .Net SIMD System.Numerics.Vector4 Might Be Slower Than a Simple Loop или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Why C# .Net SIMD System.Numerics.Vector4 Might Be Slower Than a Simple Loop бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Why C# .Net SIMD System.Numerics.Vector4 Might Be Slower Than a Simple Loop

Exploring the surprising performance of C# SIMD with Vector4 compared to traditional loops and how to optimize your code.
---
This video is based on the question https://stackoverflow.com/q/68280679/ asked by the user 'Tarik' ( https://stackoverflow.com/u/990750/ ) and on the answer https://stackoverflow.com/a/68281210/ provided by the user 'Jcl' ( https://stackoverflow.com/u/68972/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: C# .Net SIMD System.Numerics.Vector4 slower than loop

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding C# .Net SIMD and Performance Challenges

When working with high-performance applications in C# , developers often turn to Single Instruction Multiple Data (SIMD) capabilities in .Net to leverage parallel processing and enhance their application’s speed. However, a common issue arises: sometimes, using SIMD constructs like System.Numerics.Vector4 can lead to slower performance compared to traditional looping. This post unpacks a specific case that highlights this problem and provides avenues for optimization.

Problem Statement: Slower Than Expected

In a recent experiment, the code snippet demonstrated a performance discrepancy where using Vector4 for arithmetic operations did not yield the expected gains over a standard nested loop implementation. The results from the timing measurements were surprising:

Loop with standard array operations: 14,257,591 ticks

Loop with Vector4 operations: 18,591,588 ticks

This notable difference prompts the question: Why was Vector4 slower?

Digging Deeper: Analyzing the Code

Let’s break down the experimentation into simpler parts to understand where the performance hit occurs.

Original Experiment Code

The original code used the following structure:

[[See Video to Reveal this Text or Code Snippet]]

In this snippet:

The vector v is populated with values from array a in every iteration.

The Vector4.Add method returns a new instance of Vector4 each time, which results in memory allocation that can negatively affect performance due to garbage collection overhead.

Proposed More Efficient Approach

An alternative way to structure the code reduces unnecessary allocations and improves performance:

[[See Video to Reveal this Text or Code Snippet]]

Why This Works Better

This simplified array manipulation approach maintains the data within arrays, avoiding the overhead associated with object creation and destruction when using Vector4. The operations are performed directly on the array, which can be optimized better by the compiler:

Reduced Assignments: The reduced number of assignments improves data handling.

Memory Overhead Minimization: By not creating new Vector4 instances, you minimize temporary memory allocations.

Conclusion and Best Practices

While using SIMD operations can significantly enhance performance in many scenarios, efficient coding practices are crucial. Here are a few recommendations for developers looking to harness the power of SIMD in C# :

Avoid Unnecessary Object Creation: As demonstrated, object creation (like Vector4) can negatively impact performance due to memory management overhead. Consider using simple types or structures instead.

Profile Before Optimization: Always measure performance before and after changes to determine if optimizations yield the intended benefits.

Current and Future Use of SIMD: As .Net evolves, libraries and compilers improve optimization techniques. Keep abreast of updates to ensure your codebase is utilizing the best practices possible.

Through testing and understanding the underpinnings of your code, you can achieve better performance and efficiency in your applications. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]