Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering the Kubernetes Operator in Airflow for Spark Submissions

  • vlogize
  • 2025-03-16
  • 51
Mastering the Kubernetes Operator in Airflow for Spark Submissions
I am relatively new to Airflow and spark and want to use the Kubernetes Operator in airflow Dag to rapache sparkkubernetesairflowspark submitkubernetespodoperator
  • ok logo

Скачать Mastering the Kubernetes Operator in Airflow for Spark Submissions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering the Kubernetes Operator in Airflow for Spark Submissions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering the Kubernetes Operator in Airflow for Spark Submissions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering the Kubernetes Operator in Airflow for Spark Submissions

Learn how to effectively use the `Kubernetes Operator` in Airflow to manage Spark jobs, ensuring that your driver and executor pods run smoothly within your Kubernetes environment!
---
This video is based on the question https://stackoverflow.com/q/75306032/ asked by the user 'SAGE' ( https://stackoverflow.com/u/20781025/ ) and on the answer https://stackoverflow.com/a/75506011/ provided by the user 'SAGE' ( https://stackoverflow.com/u/20781025/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: I am relatively new to Airflow and spark and want to use the Kubernetes Operator in airflow Dag to run a Spark Submit command

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Troubleshooting Spark Jobs in Airflow with the Kubernetes Operator

Apache Airflow is an extremely powerful tool for orchestrating complex workflows, and with the Kubernetes Operator, it becomes even more versatile. If you're relatively new to Airflow and Spark, you might encounter some challenges when trying to execute Spark commands using the Kubernetes Operator within your Airflow DAG.

The Problem: Driver Pod Failing

You might find yourself in a situation where you have set up Airflow to run a Spark job that involves taking data from a MySQL table, dumping it into a text file, and then uploading that file to a Minio bucket (similar to AWS S3). In your scenario, the intention is to trigger a spark-submit operation through the Kubernetes Operator. However, your driver pod keeps failing to reach the running state. This failure often causes the executor pod to fail as well.

Key Indicators of the Problem

Driver Pod Failure: Despite running successfully from the command line, the driver pod fails when triggered via Airflow.

Executor Pod Dependency: The executor pods are failing due to the driver pod not being in the running state.

Configuration: You suspect that there might be some misconfiguration in the DAG.

The Solution: Adjusting the Spark Job Execution

After careful consideration and some code adjustments, the issue can be resolved by leveraging the Airflow pod itself as the spark driver. This means instead of trying to spawn a new driver pod, you use the existing Airflow worker pod to submit the job.

Step-by-step Guide

Here’s how to structure your DAG to implement the solution effectively:

1. Basic Setup

Start by importing necessary libraries and setting up your DAG as follows:

[[See Video to Reveal this Text or Code Snippet]]

2. Defining Tables and Task Functions

Implement utility functions to handle the tables:

[[See Video to Reveal this Text or Code Snippet]]

3. Use KubernetesPodOperator for Spark Jobs

Modify your job submission logic using the KubernetesPodOperator:

[[See Video to Reveal this Text or Code Snippet]]

4. Constructing the DAG Flow

Finally, use PythonOperator to load the list of tables and trigger the load_table function via Airflow:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using the Airflow pod itself as the Spark driver, you greatly simplify your setup and improve the robustness of your workflow. This method efficiently cleans up any failures related to pod spawning while ensuring your Spark jobs are performed correctly.

If you find yourself facing similar challenges, this structured approach will provide a solid template to work from. Whether you venture further into Airflow and Spark or refine the configurations, this foundational knowledge will serve you well in your data engineering journey.

If you have any questions or further issues, don’t hesitate to reach out!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]