Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values

  • vlogize
  • 2025-09-14
  • 1
How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values
how to set all inner values of 2d numpy array to the same size with default fill valuespythonpython 3.xnumpymultidimensional array
  • ok logo

Скачать How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values

Discover how to easily standardize the inner values of a 2D numpy array to a uniform size, ensuring that no information is lost, using padding techniques in Python.
---
This video is based on the question https://stackoverflow.com/q/62442926/ asked by the user 'Tim' ( https://stackoverflow.com/u/5398884/ ) and on the answer https://stackoverflow.com/a/62443070/ provided by the user 'Ehsan' ( https://stackoverflow.com/u/4975981/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: how to set all inner values of 2d numpy array to the same size with default fill values

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Set All Inner Values of a 2D Numpy Array to the Same Size with Default Fill Values

Working with multidimensional arrays in Python can sometimes present a challenge—especially when your 2D numpy arrays contain sub-arrays (or inner arrays) of differing sizes. In many cases, you might want all of these inner arrays to have the same length without losing any valuable information. This guide will guide you through the process of standardizing the sizes of the inner arrays by padding shorter arrays with default fill values.

Understanding the Problem

Imagine you have a numpy array where some inner arrays are larger than others. For example:

[[See Video to Reveal this Text or Code Snippet]]

In this array, some of the sub-arrays contain different numbers of elements, and when you try to perform operations on them, you may encounter issues. You want to convert this into a uniform array like so:

[[See Video to Reveal this Text or Code Snippet]]

Here, we filled shorter arrays with zeros to standardize their size. The challenge is to achieve this transformation programmatically.

The Solution

To solve this problem, we can utilize numpy's built-in functions. Here’s how:

Step 1: Determine the Maximum Size

First, we need to find out the maximum size of the inner arrays. This step is crucial, as we will use this length to determine how much padding is necessary for each sub-array.

Step 2: Use the Pad Function

Numpy has a convenient pad function that allows you to easily add padding values to an array. We can specify how many values to add and what value to fill them with (the default value is 0).

Step 3: Code Implementation

With the strategy laid out, let's see the implementation in Python:

[[See Video to Reveal this Text or Code Snippet]]

Detailed Breakdown of the Code:

Import Numpy: Begin by importing the numpy library.

Define the Array: Create the 2D numpy array a, filled with sub-arrays of varying lengths.

Find Maximum Size: Use a list comprehension to find the length of each sub-array and use the max function to get the maximum length.

Pad the Arrays: Use np.pad() to adjust each inner array to the maximum size. The pad function takes a tuple indicating how many values to pad before and after the array (in this case, we are only padding after), and the fill type (constant with a default of 0).

Stack the Results: Finally, use np.stack() to combine the padded arrays back into a single 2D array.

Step 4: Output

The resulting padded array would look similar to this:

[[See Video to Reveal this Text or Code Snippet]]

Now you have a clean, uniform 2D numpy array, where all inner arrays have been successfully adjusted to the same size without losing any original data.

Conclusion

In just a few simple steps, you can convert your variable-size 2D numpy arrays into a standardized format. This is an essential technique for data manipulation and analysis when working in Python. Remember that you can easily customize the padding value to any number you prefer, which can be particularly helpful depending on your application needs.

If you have any questions or comments, or if you'd like to share your experiences with numpy array padding, feel free to reach out below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]