Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Consume REST API in Azure Databricks with Scala

  • vlogize
  • 2025-10-01
  • 2
How to Consume REST API in Azure Databricks with Scala
Databricks consuming rest apiscalaapiapache sparkdatabricksazure databricks
  • ok logo

Скачать How to Consume REST API in Azure Databricks with Scala бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Consume REST API in Azure Databricks with Scala или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Consume REST API in Azure Databricks with Scala бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Consume REST API in Azure Databricks with Scala

Learn how to easily consume a REST API in Azure Databricks using Scala, handle JSON data, and implement parallel API calls.
---
This video is based on the question https://stackoverflow.com/q/63650969/ asked by the user 'Krystian Fiertek' ( https://stackoverflow.com/u/9256512/ ) and on the answer https://stackoverflow.com/a/63854798/ provided by the user 'SanBan' ( https://stackoverflow.com/u/5606318/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Databricks consuming rest api

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Unlocking the Power of Azure Databricks: Consuming REST APIs with Scala

As a newcomer to Azure Databricks and Scala, you might find yourself facing a common challenge - consuming HTTP REST APIs that return JSON data. While Databricks is renowned for its data processing capabilities using Apache Spark, navigating its libraries and functionalities to integrate APIs can be daunting. In this guide, we'll explore how to seamlessly work with REST APIs in Databricks and enhance your data processing flexibility.

The Challenge

You may have noticed that the official Databricks documentation lacks comprehensive information on using REST APIs as data sources. This can be particularly frustrating when you want to perform operations such as pagination and parallel API calls. Thankfully, there is a solution that empowers you to leverage the full potential of Spark for this task.

Solution Overview

The approach involves a few straightforward steps:

Performing a GET request to fetch the data from the API endpoint.

Creating an RDD (Resilient Distributed Dataset) from the response you receive.

Reading the RDD as a DataFrame using Spark.

Let's break down this process further.

Step-by-Step Implementation

Step 1: Define the GET Request

First, you need a simple function to perform the GET request. This function will return the contents of the API response as a string. Here’s how you do that:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Set the API URL

Next, specify the URL of your REST API. Remember to replace the placeholder values with actual endpoints.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Fetch and Process the Response

Using the function you defined, make the GET request and store the result. You will also want to ensure the JSON response is correctly formatted by removing any unnecessary line endings.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Create an RDD

With the cleaned JSON response, the next step is to create an RDD. The sc.parallelize() function allows you to create a distributed dataset from a list.

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Read as DataFrame

Finally, read the RDD as a DataFrame using the spark.read.json() function. This action allows you to manipulate the data using Spark's powerful data processing capabilities.

[[See Video to Reveal this Text or Code Snippet]]

Complete Code Example

Here’s how your complete code looks once combined:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

And that’s it! You have successfully consumed a REST API in Azure Databricks using Scala and returned the data as a DataFrame for additional processing. This method provides a solid foundation for more complex scenarios, such as making multiple API calls in parallel, particularly useful for handling paginated data.

Remember, exploring further functionalities in Databricks can open new doors for efficient data processing and analysis. Embrace the power of Spark and enhance your data workflows today!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]