Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть chi square category feature selection python

  • CodeTube
  • 2025-01-19
  • 3
chi square category feature selection python
chi-square feature selectionPython feature selectionchi-square test Pythoncategorical feature selectionstatistical feature selectionsklearn chi-squarefeature importance Pythonchi-square analysisfeature selection techniquesdata preprocessing Pythonchi-square methodPython data analysisfeature extraction Pythonchi-squared statistics
  • ok logo

Скачать chi square category feature selection python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно chi square category feature selection python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку chi square category feature selection python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео chi square category feature selection python

Download 1M+ code from https://codegive.com/541c51b
certainly! chi-square (χ²) is a statistical test used to determine if there is a significant association between categorical variables. in the context of feature selection, it helps in selecting features that are most relevant to the target variable.

what is chi-square test?
the chi-square test compares the observed frequencies in each category of a contingency table to the frequencies we would expect if there were no association between the variables. the null hypothesis states that there is no association between the features and the target variable.

when to use chi-square test?
when you have categorical data (both features and target variable).
when you want to find out if any of the features have a significant effect on the target variable.

python implementation

we will use the `chi2` function from the `sklearn.feature_selection` module to perform the chi-square feature selection. below is a step-by-step guide with an example.

step-by-step guide

1. *install required libraries*
make sure you have the necessary libraries installed. you can install them using pip if you haven’t already.



2. *load data*
for this example, we'll create a synthetic dataset using `pandas`.

3. *preprocess data*
convert categorical variables to a format suitable for the chi-square test.

4. *apply chi-square test*
use the chi-square test to determine feature importance.

5. *select features*
choose the best features based on the test results.

example code

here's a complete code example demonstrating the above steps:



explanation of the code:
we load the iris dataset.
the target variable is converted to a categorical format.
we apply the chi-square test using `selectkbest` to select the top `k` features based on their scores.
we compute and print the chi-square scores for all features.
finally, we display the top features selected based on their chi-square scores.

conclusion
the chi-square test is a useful method for feature se ...

#ChiSquare #FeatureSelection #numpy
chi-square feature selection
Python feature selection
chi-square test Python
categorical feature selection
statistical feature selection
sklearn chi-square
feature importance Python
chi-square analysis
feature selection techniques
data preprocessing Python
machine learning feature selection
chi-square method
Python data analysis
feature extraction Python
chi-squared statistics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]