Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Delete Rows in a Spark DataFrame by a Specific Number

  • vlogize
  • 2025-05-25
  • 2
How to Delete Rows in a Spark DataFrame by a Specific Number
How to filter or delete the row in spark dataframe by a specific number?apache sparkpysparkapache spark sql
  • ok logo

Скачать How to Delete Rows in a Spark DataFrame by a Specific Number бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Delete Rows in a Spark DataFrame by a Specific Number или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Delete Rows in a Spark DataFrame by a Specific Number бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Delete Rows in a Spark DataFrame by a Specific Number

Learn how to effectively filter or delete rows in a Spark DataFrame to balance the count of different values. Perfect for data manipulation tasks using PySpark!
---
This video is based on the question https://stackoverflow.com/q/72319447/ asked by the user 'Alan K' ( https://stackoverflow.com/u/14461150/ ) and on the answer https://stackoverflow.com/a/72321891/ provided by the user 'mazaneicha' ( https://stackoverflow.com/u/638764/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to filter or delete the row in spark dataframe by a specific number?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Balancing Rows in a Spark DataFrame

When working with data in Apache Spark, specifically with DataFrames using PySpark, you may encounter situations where you need to balance the occurrence of certain values in your dataset. For example, you might have a DataFrame with a column containing names, and you want to ensure that the number of occurrences of one name doesn’t exceed another. In this guide, we will discuss how to filter or delete rows in a Spark DataFrame by a specific number.

The Problem at Hand

Consider the following DataFrame:

keyvalue1Bob2Bob3Alice4Alice5AliceHere, you have two names: "Bob" and "Alice". In this example, "Alice" appears three times, whereas "Bob" only appears twice. If your goal is to reduce the number of rows containing "Alice" so that it matches the number of rows for "Bob", you need to delete one row containing "Alice" randomly.

The Solution

To achieve this, we can utilize the Spark window function along with the row_number function. This approach allows us to create a sequence number for each row within partitioned groups (in this case, each unique name).

Step-by-Step Guide

Import Necessary Libraries: Start by importing the required functions from PySpark.

[[See Video to Reveal this Text or Code Snippet]]

Create the Initial DataFrame: Define your DataFrame with keys and values.

[[See Video to Reveal this Text or Code Snippet]]

Show the Initial DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This should output:

[[See Video to Reveal this Text or Code Snippet]]

Define the Window Specification: Create a window specification that partitions the data by "value" and orders it.

[[See Video to Reveal this Text or Code Snippet]]

Create a Sequential Column: Use the row_number function to add a sequential number within each partition.

[[See Video to Reveal this Text or Code Snippet]]

The output will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Filter Rows by Count: Decide how many rows of "Alice" you want to keep. For this example, let's set this number to 2.

[[See Video to Reveal this Text or Code Snippet]]

After executing this, the output will be:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the combination of the Spark window function and row numbering provides an efficient way to balance the rows of your DataFrame. With this method, you can easily delete or filter rows down to a specific count based on your requirements.

Next time you need to manipulate your dataset to maintain a balance, remember this approach!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]