Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Calculate the Probability of Stock Price Movement After k Consecutive Down Days Using Pandas

  • vlogize
  • 2025-10-10
  • 0
Calculate the Probability of Stock Price Movement After k Consecutive Down Days Using Pandas
Count by groups (pandas)pythonpandasnumpy
  • ok logo

Скачать Calculate the Probability of Stock Price Movement After k Consecutive Down Days Using Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Calculate the Probability of Stock Price Movement After k Consecutive Down Days Using Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Calculate the Probability of Stock Price Movement After k Consecutive Down Days Using Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Calculate the Probability of Stock Price Movement After k Consecutive Down Days Using Pandas

Discover how to calculate the probability of the next day being an "up day" after observing k consecutive "down days" in stock data using Pandas in Python.
---
This video is based on the question https://stackoverflow.com/q/68432627/ asked by the user 'Neonleon' ( https://stackoverflow.com/u/16418189/ ) and on the answer https://stackoverflow.com/a/68432705/ provided by the user 'Scott Boston' ( https://stackoverflow.com/u/6361531/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Count by groups (pandas)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Stock Price Patterns: Calculating Probabilities with Pandas

In the world of stock trading, understanding price trends can significantly aid in making informed decisions. One common pattern traders look for is the sequence of stock price movements, particularly how often an "up day" follows a series of "down days." This guide will delve into how to compute the probability of the next day being "up" after experiencing k consecutive "down days" using the Pandas library in Python.

The Problem

You have a dataset of stock prices that includes labels for whether each trading day was an "up" day (+ ) or a "down" day (-). Given a series of years of stock data, your goal is to find the probability that after seeing k consecutive "down days," the next day is an "up day." For instance, we want to know the probabilities for k = 1, k = 2, and k = 3.

Example Data

To understand our problem better, here is an example of the data structure we might be working with:

DateTrue Label2019-01-02+ 2019-01-03-2019-01-04+ 2019-01-07+ 2019-01-08+ The Solution

To calculate the desired probabilities, we can apply the following logic using Python's Pandas library. Below, we'll go through the code step by step.

Step-by-Step Code Explanation

Import Libraries: First, ensure you have the necessary libraries installed and import them into your script.

[[See Video to Reveal this Text or Code Snippet]]

Generate Sample Data: For demonstration purposes, create a random series of stock price movements.

[[See Video to Reveal this Text or Code Snippet]]

Create Groupings: We use a cumulative sum to label and group days based on the occurrence of + days. This helps in identifying sequences of - days.

[[See Video to Reveal this Text or Code Snippet]]

Calculate Probabilities: Find the probability of three consecutive down days followed by an up day. Here's how it is done:

[[See Video to Reveal this Text or Code Snippet]]

Display Result: Finally, display the calculated probability.

[[See Video to Reveal this Text or Code Snippet]]

Understanding the Results

The output of the calculations shows the probability that after experiencing three consecutive "down days," the following day will be an "up day." In our example, this probability is approximately 0.437 or 43.7%.

Key Takeaways

Using Pandas, you can efficiently analyze trends in stock price movements and calculate various probabilities.

Grouping and cumulative counting provide a clear way to handle sequences in your data.

Probability calculations based on historical data can guide trading decisions, enhancing your strategic approach to the stock market.

By employing the steps outlined in this post, you can adapt and extend this method to analyze different sets of stock market data and derive additional insights that can drive your trading strategies forward.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]