Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data

  • vlogize
  • 2025-05-25
  • 1
How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data
Python Pyplot: Change appearance of axis without changing axis itselfpythonpython 3.xmatplotlib
  • ok logo

Скачать How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data

Discover how to easily modify the `appearance` of your plot axes in Python using Matplotlib without changing the underlying data.
---
This video is based on the question https://stackoverflow.com/q/72197703/ asked by the user 'Tim' ( https://stackoverflow.com/u/18811322/ ) and on the answer https://stackoverflow.com/a/72198283/ provided by the user 'Marko' ( https://stackoverflow.com/u/13508150/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python, Pyplot: Change appearance of axis without changing axis itself

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Change the Appearance of Axes in Python's Matplotlib Without Altering Data

When working with graphical data presentations in Python using Matplotlib, you may often face the challenge of tweaking the appearance of your plot without altering the underlying data. A common scenario is needing to adjust axis labels while using data that must remain unchanged. In this post, we will explore how to effectively change the x-axis labels in a plot while keeping the original data intact.

The Problem

Imagine you have an array of 2000 values that corresponds to a frequency measurement scanning between 7990 MHz and 8010 MHz. The values for the x-axis are stored from 0 to 1999, but you'd like the x-axis to display more meaningful labels, specifically the frequencies at the endpoints (7990 and 8010 MHz).

Attempting to alter the data values directly is not ideal, as it might conflict with other plotting functions that rely on the original x-axis values. So, how can you adjust the x-axis display to suit your needs while keeping the data unchanged?

The Solution

The solution involves using the xticks() function from Matplotlib, which allows you to customize the labels of the x-axis without modifying your data array. Here’s how you can implement this step-by-step.

Step 1: Import Necessary Libraries

First, you'll need to import the required libraries:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create Your Data

Define your data using NumPy. For demonstration, we’ll simulate some simple linear data:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Plot Your Data

Use the plot() method to create your graph. Here is where you actually plot the dummy data:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Customize the X-Axis Labels

Now we will customize the x-axis using xticks(). This function enables you to define specific locations on the x-axis and their corresponding labels:

[[See Video to Reveal this Text or Code Snippet]]

In this example, we not only specify labels for the start and end of the range, but also add some intermediate values to help in identifying where specific points on the x-axis fall. You can choose to include as few or as many labels as necessary depending on your needs.

Step 5: Show the Plot

Finally, display the plot with the customized x-axis:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using the xticks() function, you can elegantly modify how your axes appear without changing the actual data being plotted. This method is particularly useful when visualizing data that requires clear and relevant axis labeling for better comprehension.

Remember, good data visualization is about clarity and presentation, and Matplotlib provides you with the tools to enhance your plots while keeping your data intact.

Happy plotting!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]