Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize

  • vlogize
  • 2025-09-23
  • 1
How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize
Dictionary data is not seperated into columns in Pandas DataFramepythonjsonpandas
  • ok logo

Скачать How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize

Discover the easiest way to handle nested JSON data in Python and convert it into a well-structured Pandas DataFrame. No more messy columns!
---
This video is based on the question https://stackoverflow.com/q/63488959/ asked by the user 'Cmagelssen' ( https://stackoverflow.com/u/13038198/ ) and on the answer https://stackoverflow.com/a/63489200/ provided by the user 'NYC Coder' ( https://stackoverflow.com/u/6168323/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Dictionary data is not seperated into columns in Pandas DataFrame

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Properly Convert Nested JSON Data into a Pandas DataFrame with json_normalize

When working with data in Python, especially datasets represented in JSON format, you may encounter situations where the data is nested. This means that the structure of the JSON is not flat, and thus, when you attempt to convert it directly into a Pandas DataFrame, the result can be messy and not separated into distinct columns.

The Problem

Frontend developers and data analysts often face the dilemma of converting nested dictionaries (from JSON) into a flat structure. This process proves to be particularly challenging when the nested data contains multiple levels of information.

For instance, consider the following simplified JSON dataset structure, which contains traffic registration points with various attributes such as id, name, and location details:

[[See Video to Reveal this Text or Code Snippet]]

When you try to load such a dataset into a Pandas DataFrame, it'll look something like this without proper handling:

[[See Video to Reveal this Text or Code Snippet]]

As a result, you may see that the information is not split into individual columns as expected. So how do you solve this?

The Solution: Using json_normalize

Luckily, Pandas provides a function called json_normalize that can simplify the process of flattening nested JSON structures. Here’s how to effectively use this function:

Step 1: Load Your JSON Data

First, use json.loads() to convert your JSON string into a Python dictionary:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Normalize the Data

Now, instead of using pd.DataFrame.from_dict(), you will utilize pd.json_normalize() function, which directly accesses the nested structure:

[[See Video to Reveal this Text or Code Snippet]]

Result

After executing this code, your DataFrame will clearly display the columns, separating each attribute into its own space:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Transforming nested JSON data into a structured Pandas DataFrame is essential for effective data analysis. Utilizing the json_normalize function not only simplifies the conversion process but also ensures that you get a clean and organized output.

By following the steps outlined in this post, you can efficiently manage and manipulate your JSON datasets, paving the way for deeper analysis and insights. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]