Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Discussion Meeting - Augmented balancing weights as linear regression

  • RoyalStatSoc
  • 2025-11-19
  • 195
Discussion Meeting - Augmented balancing weights as linear regression
  • ok logo

Скачать Discussion Meeting - Augmented balancing weights as linear regression бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Discussion Meeting - Augmented balancing weights as linear regression или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Discussion Meeting - Augmented balancing weights as linear regression бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Discussion Meeting - Augmented balancing weights as linear regression

This Discussion Meeting was held at the RSS Conference 2025 in Edinburgh.

RSS Conference 2026:
https://rss.org.uk/training-events/co...

RSS Discussion Meetings:
https://rss.org.uk/training-events/ev...

Augmented balancing weights as linear regression
We provide a novel characterization of augmented balancing weights, also known as automatic de-biased machine learning (AutoDML). These popular doubly robust or de-biased machine learning estimators combine outcome modeling with balancing weights — weights that achieve covariate balance directly in lieu of estimating and inverting the propensity score.

When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine the coefficients from the original outcome model coefficients and coefficients from an unpenalized ordinary least squares (OLS) fit on the same data. We see that, under certain choices of regularization parameters, the augmented estimator often collapses to the OLS estimator alone; this occurs for example in a re-analysis of the LaLonde (1986) dataset. We then extend these results to specific choices of outcome and weighting models.

We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression. This holds numerically in finite samples and lays the groundwork for a novel analysis of undersmoothing and asymptotic rates of convergence. When the weighting model is instead lasso-penalized regression, we give closed-form expressions for special cases and demonstrate a “double selection” property.

Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights.

Authors:
David Bruns-Smith, UC Berkeley, USA,
Oliver Dukes, Ghent University, Belgium,
A V Feller, UC Berkeley, USA,
Elizabeth L Ogburn, John Hopkins University, USA.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]