Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions?

  • vlogize
  • 2025-04-05
  • 0
Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions?
Can NumPy replace these list comprehensions to make it run faster?pythonalgorithmnumpygraphicslinear algebra
  • ok logo

Скачать Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions?

Discover how to utilize `NumPy` for faster 3D rendering computations in Python by replacing list comprehensions with vectorization techniques, and learn about performance improvements.
---
This video is based on the question https://stackoverflow.com/q/77810699/ asked by the user 'Trevor Carter' ( https://stackoverflow.com/u/23238383/ ) and on the answer https://stackoverflow.com/a/77810904/ provided by the user 'arrmansa' ( https://stackoverflow.com/u/21192065/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Can NumPy replace these list comprehensions to make it run faster?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Accelerating 3D Rendering in Python: Can NumPy Replace List Comprehensions?

When developing 3D graphics applications in Python, performance is often a key consideration. Rendering speeds are usually critical because they directly affect the frame rate of interactive applications. A common issue developers encounter is that the majority of runtime is spent in nested loops or list comprehensions, particularly when dealing with matrix operations.

In this post, we'll explore a specific use case where a user struggles with slow rendering due to two list comprehensions in their code, and how switching to NumPy can provide significant speed improvements.

The Problem

The original rendering function is designed to convert 3D vertex coordinates from world-space to screen-space coordinates. In the provided code, two primary list comprehensions were highlighted:

Position Calculation: The first list comprehension computes the camera-space coordinates by performing matrix multiplication row-wise for each vertex.

Perspective Transformation: The second list comprehension applies a perspective transformation to the computed positions based on their z-values.

These list comprehensions consume the bulk of the program's runtime, resulting in sluggish performance, especially as the number of vertices increases.

The Solution: Vectorization with NumPy

The primary solution to this performance bottleneck is to leverage NumPy for vectorized array operations, which eliminates Python's increasing overhead when iterating through lists manually. Below, we'll walk through how to effectively replace the list comprehensions with NumPy operations.

Step 1: Matrix Multiplication Using NumPy

Instead of computing the position for each row individually, we can use NumPy's native broadcasting to perform matrix operations in a more efficient manner:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Applying the Perspective Transformation

Next, we can simplify the perspective transformation with another NumPy operation, which utilizes broadcasting again:

[[See Video to Reveal this Text or Code Snippet]]

Final Code Implementation

Combining both steps into our function yields:

[[See Video to Reveal this Text or Code Snippet]]

The Results

By replacing the list comprehensions with NumPy operations, the function exhibited substantial performance gains. Initial tests showed a dramatic reduction in execution time—from over 15 seconds to under 0.2 seconds for similar inputs. Furthermore, utilizing libraries like numba allowed for further speed enhancements, making the function run even faster, reaching approximately 0.03 seconds.

Key Takeaways

Vectorization: Utilizing NumPy for vectorized operations diminishes the overhead of Python loops and enhances execution speed multipliers.

Performance Libraries: Consider using numba for compiling Python functions into machine code for further performance boosts, especially in computationally heavy workflows.

In summary, replacing list comprehensions with NumPy not only simplifies your code but also pushes performance across the board, making it highly suitable for applications requiring real-time computations. The outcome highlights the essential role of optimized mathematical operations in improving application efficiency.

With NumPy, rendering in Python doesn't have to be slow; embrace vectorization for the best results!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]