Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A Full Course on Differentiation (Multivariable Calculus)

  • Serious Solvers
  • 2025-03-13
  • 204
A Full Course on Differentiation (Multivariable Calculus)
  • ok logo

Скачать A Full Course on Differentiation (Multivariable Calculus) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A Full Course on Differentiation (Multivariable Calculus) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A Full Course on Differentiation (Multivariable Calculus) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A Full Course on Differentiation (Multivariable Calculus)

Differentiation in multivariable calculus is a fundamental tool for understanding how functions change in multiple dimensions, and this video provides a comprehensive, step-by-step guide to mastering it. We begin by introducing functions of multiple variables, setting the stage for analyzing surfaces, level curves, and how variables interact in higher dimensions.

From there, we dive into partial derivatives, exploring how functions change with respect to individual variables while holding others constant. We introduce the chain rule and product rule, showing how they extend naturally to multiple variables and work through applied examples to reinforce their usage. We also derive the function differential using Taylor series, providing deeper insight into approximating functions locally and understanding rates of change in multidimensional space.

As we progress, we tackle more advanced topics such as implicit functions, change of variables, and Jacobians—essential tools for transformations in multivariable calculus. We explain how Jacobians relate to inverse functions and why they play a crucial role in coordinate transformations.

Optimization is a key application of multivariable differentiation, so we cover stationary points, global and local maxima and minima, and introduce the powerful Lagrange multipliers method for constrained optimization. Finally, we conclude with a discussion on exact differentials, tying everything together and demonstrating their significance in calculus and physics.

By the end of this course, you'll have a solid grasp of multivariable differentiation, equipping you with the skills to tackle real-world problems in engineering, physics, and applied mathematics. Whether you're a student or a professional looking for a refresher, this video provides clear explanations, worked examples, and in-depth insights to help you master differentiation in multiple dimensions.

00:00:00 – Introduction - Functions of Multiple Variables
00:05:53 – Level Curves
00:10:55 – Derivatives of Multivariable Functions
00:19:19 – The Chain Rule
00:23:02 – The Product Rule
00:24:44 – Chain & Product Rules Applied to Multiple Variables
00:32:30 – Derivation of the Function Differential Using Taylor Series
00:45:46 – Rates of Change
00:55:58 – Implicit Functions
01:04:46 – Change of Variables
01:18:22 – Jacobians and Inverse Functions
01:50:36 – Stationary Points (Global & Local Maxima and Minima)
02:24:50 – Lagrange Multipliers
02:56:18 – Exact Differentials

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]