Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть What Is Logistic Regression Used For In Python (probabilities)? - Python Code School

  • Python Code School
  • 2025-10-30
  • 0
What Is Logistic Regression Used For In Python (probabilities)? - Python Code School
A IArtificial IntelData AnalysisData MiningData ScienceLogistic RegressionMachine LearningPredictive ModelingPythonPython TutorialStatistics
  • ok logo

Скачать What Is Logistic Regression Used For In Python (probabilities)? - Python Code School бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно What Is Logistic Regression Used For In Python (probabilities)? - Python Code School или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку What Is Logistic Regression Used For In Python (probabilities)? - Python Code School бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео What Is Logistic Regression Used For In Python (probabilities)? - Python Code School

What Is Logistic Regression Used For In Python (probabilities)? Are you interested in understanding how to predict outcomes based on data? In this detailed video, we’ll introduce you to logistic regression in Python, a popular method for estimating the likelihood that data points belong to a specific category. We’ll start by explaining what logistic regression does and how it differs from other types of regression. You’ll learn about the core concept of modeling probabilities and how the logistic function helps convert raw data into meaningful chances. We’ll also walk through how to implement logistic regression using Python libraries like scikit-learn, including how to prepare your data, train a model, and interpret the predicted probabilities. Additionally, we’ll cover how to set decision thresholds to classify data points effectively, whether for binary outcomes like yes/no, spam/not spam, or true/false. You’ll discover some common real-world applications of logistic regression, such as customer behavior prediction and medical diagnoses. We’ll also discuss how the model estimates odds and how these can be interpreted to understand the influence of different features. Finally, we’ll show you how to evaluate your model’s performance with tools like confusion matrices to ensure accurate predictions. Join us to learn how logistic regression can be a powerful tool in your data analysis toolkit. Subscribe for more Python tutorials and data science tips!

⬇️ Subscribe to our channel for more valuable insights.

🔗Subscribe: https://www.youtube.com/@PythonCodeSc...

#Python #LogisticRegression #DataScience #MachineLearning #PythonTutorial #DataAnalysis #PredictiveModeling #Statistics #DataMining #AI #ArtificialIntelligence #DataVisualization #PythonCode #Programming #LearnPython

About Us: Welcome to Python Code School! Our channel is dedicated to teaching you the essentials of Python programming. Whether you're just starting out or looking to refine your skills, we cover a range of topics including Python basics for beginners, data types, functions, loops, conditionals, and object-oriented programming. You'll also find tutorials on using Python for data analysis with libraries like Pandas and NumPy, scripting, web development, and automation projects.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]