Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Filtering Rows in Pandas DataFrame Using regex to Exclude Client Codes

  • vlogize
  • 2025-05-27
  • 1
Filtering Rows in Pandas DataFrame Using regex to Exclude Client Codes
How can I filter rows based on a regex from one column to anotherpythonregexpandas
  • ok logo

Скачать Filtering Rows in Pandas DataFrame Using regex to Exclude Client Codes бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Filtering Rows in Pandas DataFrame Using regex to Exclude Client Codes или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Filtering Rows in Pandas DataFrame Using regex to Exclude Client Codes бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Filtering Rows in Pandas DataFrame Using regex to Exclude Client Codes

Discover how to effectively filter rows in a Pandas DataFrame based on regex criteria, ensuring you understand how to exclude specific ClientCodes from FileNames.
---
This video is based on the question https://stackoverflow.com/q/66691844/ asked by the user 'Luis Valencia' ( https://stackoverflow.com/u/1014217/ ) and on the answer https://stackoverflow.com/a/66692043/ provided by the user 'Anurag Dabas' ( https://stackoverflow.com/u/14289892/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How can I filter rows based on a regex from one column to another

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Filter Rows in a Pandas DataFrame Using Regex

When working with data in Python, Pandas is an invaluable tool that allows you to manipulate and filter data efficiently. Sometimes you may encounter a situation where you need to filter rows based on certain conditions, specifically using regular expressions (regex). In this guide, we will address a common problem: how to filter rows in a DataFrame where a specific column’s values should not appear in the response of another column.

The Problem

Imagine you have a DataFrame with two columns, ClientCode and FileName. Your task is to filter out rows where the ClientCode is not included in the FileName field. For example, let’s consider the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Upon inspection, the goal is to return rows where the ClientCode is not found in the FileName, producing the following resulting DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Solution Overview

The good news is, filtering these rows in Pandas is straightforward using built-in functions. Below, we’ll detail the steps necessary to achieve this filtering with a straightforward expression.

Step-by-Step Solution

Step 1: Import the Necessary Libraries

Before beginning, ensure you have Pandas imported. You can do this with the following line of code:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create Your DataFrame

Create the DataFrame using the provided sample data:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Apply the Filtering Criteria

To filter rows where the ClientCode is not found in the FileName, utilize the following code:

[[See Video to Reveal this Text or Code Snippet]]

Breaking Down the Code:

df['FileName'].str.split('--', expand=True)[0]: This splits the FileName at the '--' and retrieves the first part, which is the code.

.astype(int): Converts the split string values into integers for comparison.

df['ClientCode'].eq(...): Compares the ClientCode column with the extracted values from FileName.

~: This operator negates the condition, returning rows where the ClientCode is not equal to the extracted values.

Step 4: Result

When you print filtered_df, you will get:

[[See Video to Reveal this Text or Code Snippet]]

These are the rows that meet the criteria of having ClientCode not present in the FileName.

Conclusion

Filtering rows based on conditions in a Pandas DataFrame can significantly enhance your data analysis capabilities. Utilizing the power of regex and the various functions provided by the Pandas library allows you to refine your datasets efficiently. The method shared in this post is just one way to achieve this filtering; the versatility of Pandas means there are often multiple approaches to solve a problem.

Now, you are equipped to filter rows based on your desired conditions. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]